作者单位
摘要
安徽大学信息材料与智能感知安徽省实验室, 安徽 合肥 230601
密封药瓶内的药物在储存过程中, 时常会因为保存方式不当, 产品质量不合格等问题导致其气密闭性变差, 极易与空气中的各种气体发生化学反应引起药品变质, 影响其正常使用。 因此, 可以通过药瓶内部各种气体浓度的测量及时反映出药品的储存状态。 其中水汽(H2O)是空气中的常见气体且极易与药品产生反应, 药瓶中H2O浓度的测量是判断瓶内药物是否变质的重要依据之一。 实际检测药瓶内水汽浓度的传统方法或通常需要直接接触到样品才能做出判断, 很难做到无损检测, 样品处理过程较为繁琐, 耗时耗力, 难以实现对大量药瓶的实时无损测量, 所以需要一个实时快速非接触式检测容器密封性的方法。 为了高效检测并实时监控密封药品存储容器(药瓶)内的水汽浓度, 提出了一种可调谐半导体激光吸收光谱(TDLAS)的数字正交锁相解调算法, 并对该算法的可行性及有效性进行了实验验证。 药瓶采用长12 cm宽9 cm高64 cm的可透光聚乙烯(PE)材质; 中心波长为1 391 nm的分布式反馈(DFB)激光器作为光源, 搭建了基于数字正交锁相解调算法的TDLAS药品检漏测量系统, 以数字锁相解调代替了传统的锁相解调并且研究了不同的调制深度、 采样率对解调出的二次谐波信号(WMS-2f)幅值的影响。 在系统各项参数最优的情况下考察了不同光功率下WMS-2f信号稳定性, 并通过拟合结果推演出其他未知水汽浓度的WMS-2f信号。 研究结果表明: 与常规锁相放大器解调算法相比, 数字锁相解调可编译性强, 系统结构更为紧凑, 成本更为低廉。 Allan方差分析显示在160 s内的状态下, 水汽检出限为18 ppm, 验证了该方法的稳定性与可靠性。
数字锁相解调 水汽浓度检测 药瓶检漏 Digital phase-locked demodulation TDLAS TDLAS Water vapor concentration detection Medicine bottle leak detection 
光谱学与光谱分析
2023, 43(3): 698
作者单位
摘要
1 上海理工大学 光电信息与计算机工程学院,上海 200093
2 上海理工大学 出版印刷与艺术设计学院,上海 200093
3 中船勘察设计研究院有限公司,上海 200063
4 上海工程技术大学 图书馆,上海 201620
光学信息处理技术本身具有高速度、并行性、信息容量大的特点。同时,光波又具有振幅、相位、波长、偏振等多种属性,是多维信息的载体。因此,光学加密在信息安全传输领域意义重大。现有的图像加密方法存在效率低、安全性差、加密容量小等问题。为了实现多图像二次加密传输,提出了一种基于级联相位迭代与计算关联成像的多图像加密算法。该方法可以同时对多幅图像进行高效加密,计算简单,安全可靠,传输数据少。利用相关系数指标评估了该方法的加密效果,并通过仿真实验验证了该方法的有效性和安全性。
级联相位检索算法 计算关联成像 图像处理 多图像加密 cascaded phase retrieval algorithm computational ghost imaging image processing multi-image encryption 
光学仪器
2023, 45(1): 60
作者单位
摘要
大连理工大学物理学院,辽宁 大连 116024
基于棱镜耦合的金膜表面塔姆等离激元(Tamm plasmon polarition, TPP)与表面等离极化激元(surface plasmon polariton, SPP)的杂化耦合受到广泛的关注和研究,但这种传统的激发装置由于拥有体积庞大的棱镜等光学元件以及对入射光角度精准控制有严格要求,限制了其集成化发展和实际应用。为了简化TPP和SPP杂化耦合激发方式,本文提出了一种光栅耦合型多层堆叠结构设计。该结构主要包括三部分:顶部纳米厚度的金膜、中间一维布拉格光子晶体以及底部金纳米光栅。在该结构中利用底部纳米光栅的一级透射光同时实现了顶部金膜上下表面SPP和TPP共振激发。两种模式之间的耦合杂化作用极大地减少了模式的共振带宽,从而使TPP-SPP模式的传感品质因数得到了显著的提高。此外,通过改变纳米光栅的周期和组成一维布拉格光子晶体的介质层厚度,SPP和TPP可以在较宽光谱范围内实现耦合杂化。相比于传统棱镜式的TPP和SPP双模式耦合结构,设计的光栅耦合型的多层堆叠结构无需借助棱镜和对入射角精确调控,在正入射光照射下就可实现两种模式的共振耦合,这不仅易于结构的进一步集成和小型化,同时对拓宽表面等离激元传感器的实际应用具有重要的意义。
表面等离激元 杂化模式 金属纳米结构 小型化 生化传感 surface plasmon resonance hybrid mode metal nanostructure miniaturization biochemical sensing 
光电工程
2022, 49(11): 220217
高景明 1,2李嵩 1,2金尚东 1彭伟 1[ ... ]杨汉武 1,2
作者单位
摘要
1 国防科技大学 前沿交叉学科学院, 长沙 410073
2 脉冲功率激光国家重点实验室, 长沙 410073
随脉冲功率技术向高重复频率、长寿命等方向发展,储能元件和开关元件在瞬态强场条件下的稳定性能检测十分必要。基于固态开关技术研制了一种百kV,μs时间尺度下的瞬态强场测试平台,主要由高压直流充电电源、初级单元、脉冲变压器、磁脉冲压缩网络、复位系统和测试腔体组成,实现了一体化结构,使用便利。首先,针对电容器测试条件,建立了完整的电路模型,详细设计了系统中各关键参量;然后,利用晶闸管组件作为初级单元控制开关,利用磁开关进行两级脉冲压缩,建立了实验装置;最后,给出了40 nF小批量陶瓷电容器的典型实验测试结果,测试电压50 kV,脉冲宽度1 μs,重复频率10 Hz,运行时间85 min(对应51 000个脉冲),平台稳定可靠性良好,为后续开展相关测试研究奠定了基础。
脉冲功率 固态开关 强场测试平台 晶闸管组件 磁脉冲压缩 脉冲电容器 pulsed power solid-state switch platform for transient intense field test serial connected thyristors magnetic pulse compression high voltage pulse capacitor 
强激光与粒子束
2022, 34(7): 075008
作者单位
摘要
1 中北大学理学院, 山西 太原 030051
2 大连理工大学物理学院, 辽宁 大连 116024
设计了一种性能优异的多频带、多特性融合的复合周期双层金属膜纳米光栅结构。通过运用有限元法进行仿真,发现该结构在65°底部TM模式偏振光斜入射下,能够在波长760、904、1028、1216 nm 处出现高吸收,其吸收强度分别为98.73%、92.84%、97.57%、99.11%。进一步模拟发现,多频带吸收峰还兼具窄带偏振滤波以及折射率传感特性,其最大折射率灵敏度为2080 nm/RIU,最大品质因数为92.1 RIU -1。另外,通过周期调制,该结构还实现了在近红外波段从944~1206 nm宽波段范围的窄带偏振滤波可调谐功能。通过对电磁场、表面电流、表面电荷的分布分析,给出了该结构多频带、多特性融合的物理激发机制。该复合周期双层金属膜光栅结构在微型化与高度集成化的多光谱红外探测、光谱成像以及生物传感等领域具有广阔的应用前景。
光学器件 表面等离激元 微纳光栅 多特性融合 
光学学报
2022, 42(8): 0824002
Author Affiliations
Abstract
1 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
A counter-surface plasmon polariton lens (CSPPL) is proposed to perform stable nanoparticle trapping by providing up to 120kbT optical potential depth. The optical potential depth is related to the incident angle and phase difference of the light incident on two gratings of CSPPL. The depth of optical potential can be manipulated with negligible displacement by the incident angle less than 20°. Both the depth and the center position of the optical potential well can be manipulated by the incident phase difference. The study of stable and manipulatable optical potential on the CSPPL promotes the integration of optical tweezers.
optical tweezers surface plasmon polaritons optical potential interference 
Chinese Optics Letters
2022, 20(2): 023601
彭伟 1,*雷辉 2
作者单位
摘要
1 河南职业技术学院机电工程学院,河南 郑州 450046
2 河南工业大学机电工程学院,河南 郑州 450001
采用1064 nm皮秒光纤激光器,在5组不同的能量密度参数下对H13热作模具钢表面油污和锈迹等污渍进行激光清洗,结果表明:2 J/cm2和3 J/cm2能量密度的激光清洗效果最佳,可使清洗后的表面粗糙度Ra分别达到(1.1±0.3)μm和(1.5±0.5)μm,表面硬度分别提高到(256±3.8)HV和(256±2.9)HV,清洗后的物相主要包括VC、(Mo,Cr)6C、(Cr,Fe)7C3和(V,Cr)2C,同时EDS能谱测试结果表明模具表面的C、Mo、V、Cr元素含量增大。
激光光学 激光清洗 H13模具钢 表面性能 工艺优化 
激光与光电子学进展
2021, 58(17): 1714002
作者单位
摘要

针对复杂电磁环境下风洞实验中绕流阻力测量和飞行器空速监测的需求,利用自主研制的基于白光干涉测量技术的压差式光纤气流传感系统开展了相关实验研究。该系统由压差式光纤气流传感探头和小型化白光干涉测量传感解调仪组成,可以实现同步高速、高精度的压差测量。传感探头可实现单通道的压差传感,通过获取待测对象表面受压与流场中静压之间的压差来进行阻力探测,或与皮托管耦合进行流速测量。传感解调仪主要由波长扫描激光器、现场可编程门阵列控制与采集模块、光电探测器组成。该系统对风洞实验中以圆柱绕流阻力为代表的经典绕流模型进行了测量与分析,所得结果和标准多通道电子压力测量仪的结果相近。该光纤传感系统仅利用光纤来感知和传输信号,可有效对抗电磁干扰,为强电磁干扰环境下利用光学方法对空气流场绕流阻力进行精确分析提供一种新的选择,在未来空气动力学研究和飞行器监测领域具有潜在的应用价值。

光纤光学 光纤传感 绕流阻力 法布里-珀罗 白光干涉 波长扫描激光器 
光学学报
2021, 41(13): 1306022
夏振杰 1刘强 2李昂 1刘悦莹 1[ ... ]彭伟 2,*
作者单位
摘要
1 大连理工大学光电工程与仪器科学学院, 辽宁 大连 116024
2 大连理工大学物理学院, 辽宁 大连 116024
提出一种采用激光器频率调制准连续相移干涉实现膜片式光纤声传感器阵列同时解调的技术。通过调制光栅Y分支(MG-Y)可调谐激光器的快速频率调谐引入相移,4个具有π/2相位偏置的光频率按顺序切换,产生准连续的正交相移信号。基于五步相移算法,任意5个相邻相移信号用于相位恢复,由于没有机械运动部件,实现了高速稳定的相位解调。该系统的相位采样率(600 kHz)取决于频率调制速度。实验结果表明,通过调整激光器输出频率,可以正确解调宽腔长范围的非本征Fabry-Perot干涉(EFPI)传感器。此外,构建了一个紧凑的多点声传感阵列系统,实现了声源定位应用。
测量 相位测量 相移干涉术 调制光栅Y分支激光器 光纤麦克风 声源定位 
中国激光
2021, 48(9): 0910002
作者单位
摘要
1 大连理工大学物理学院, 辽宁 大连 116024
2 大连理工大学光电工程与仪器科学学院, 辽宁 大连 116024
调制光栅Y分支(MG-Y)可调谐半导体激光器能够实现宽波长范围的快速调谐,有望成为光纤传感应用中最有发展前景的光源之一。为了满足光纤传感应用中对于精细波长准连续调谐的需求,提出了一种基于样条插值的MG-Y型激光器的自动化测试技术。该方案充分利用了MG-Y激光器的调谐特性,通过左、右光栅反射区电流的粗扫描获取覆盖40 nm范围的平滑的调谐路径。将每一条路径内的左右光栅反射区电流组合对应的线性调谐段进行去重拼接后,可实现目标波长的快速插值检索。通过对半导体光放大器的电流和相位区电流的双重校准,实现了激光器在不同输出波长下的平坦功率。利用该技术构建了覆盖1527~1567 nm、波长间隔为8 pm的波长-电流查找表。该查找表的电流调谐路径平滑,功率波动小于0.2 dBm,可用于需要进行快速光谱采集的光纤传感应用中。
激光器 可调谐半导体激光器 光纤传感 自动化测试 
中国激光
2020, 47(12): 1206004

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!