Tingyuan Jia 1,2,3Shaoming Xie 1,2Zeyu Zhang 1,2,3,4,*Qinxue Yin 1,3[ ... ]Yuxin Leng 1,2,3,5,***
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
4 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
5 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
Bilayer graphene, which is highly promising for electronic and optoelectronic applications because of its strong coupling of the Dirac–Fermions, has been studied extensively for the emergent correlated phenomena with magic-angle manipulation. Due to the low energy linear type band gap dispersion relationship, graphene has drawn an amount of optoelectronic devices applications in the terahertz region. However, the strong interlayer interactions modulated electron-electron and electron-phonon coupling, and their dynamics in bilayer graphene have been rarely studied by terahertz spectroscopy. In this study, the interlayer interaction influence on the electron-electron and the electron-phonon coupling has been assigned with the interaction between the two graphene layers. In the ultrafast cooling process in bilayer graphene, the interlayer interaction could boost the electron-phonon coupling process and oppositely reduce the electron-electron coupling process, which led to the less efficient thermalization process. Furthermore, the electron-electron coupling process is shown to be related with the electron momentum scattering time, which increased vividly in bilayer graphene. Our work could provide new insights into the ultrafast dynamics in bilayer graphene, which is of crucial importance for designing multi-layer graphene-based optoelectronic devices.
terahertz ultrafast spectroscopy bilayer graphene 
Chinese Optics Letters
2022, 20(9): 093701
作者单位
摘要
聊城大学物理科学与信息工程学院, 山东省光通信科学与技术重点实验室, 山东 聊城 252059
采用脉冲激光沉积(PLD)的方法在玻璃衬底上制备了二氧化钛薄膜,研究了基片温度和氧压对薄膜表面形貌、晶体结构和光学性能的影响。结果表明:当基片温度低于300 ℃或高于400 ℃时,二氧化钛薄膜的折射率都随着基片温度的升高而增大;基片温度处于300 ℃~400 ℃之间时,折射率随着基片温度的升高而降低;基片温度为300 ℃时,折射率最大。薄膜的折射率随着氧压的增大而减小。X射线衍射仪(XRD)显示薄膜在基片温度低于300 ℃时为非晶态结构,在300 ℃时出现了锐钛矿结构,当基片温度升高到500 ℃时,薄膜仍为锐钛矿结构;300 ℃时,薄膜的A(101)衍射峰最强,结晶度最好。通过原子力显微镜(AFM)图分析得出:低于300 ℃时,随着基片温度的升高,二氧化钛薄膜的晶粒尺寸增大,聚集密度增大;高于300 ℃时,晶粒的平均尺寸大小几乎不变,300 ℃时,晶粒排列最均匀有序。根据薄膜的透射谱计算了薄膜的光学带隙,可知随着基片温度的升高,二氧化钛薄膜的带隙变窄;随着氧压的增大,带隙变宽。
薄膜 折射率 基片温度 氧压 透射谱 带隙 
中国激光
2013, 40(2): 0207001
作者单位
摘要
聊城大学 物理科学与信息工程学院, 山东 聊城 252059
为探索不同的极化条件对分子取向的影响,用旋涂法制备了偶氮主客体掺杂薄膜,并用电晕极化的方法分别在不同温度和厚度条件下使分子取向,通过测量极化前后紫外-可见吸收谱,研究了平均取向因子的变化,并和二次谐波产生结果进行了比较。实验结果表明:对于厚度相同的偶氮薄膜,随着温度的升高,平均取向因子增大,但二次谐波信号强度先增大后减小;温度越接近聚合物玻璃转变温度,分子越容易取向,但温度过高,聚甲基丙烯酸甲酯变为粘滞态,部分偶氮分子容易在高温下蒸发掉,导致二次谐波信号强度降低,而平均取向因子增大;随着薄膜厚度的增大,针-板电极电场造成薄膜内部电场分布的不均匀性增加,极化效率降低,平均取向因子不断减小,二次谐波信号强度先增大后减小。
电晕极化 平均取向因子 偶氮化合物 主客体掺杂 紫外-可见吸收谱 corona poling average alignment factor azo-dye compounds guest-host system UV-Vis spectra 
强激光与粒子束
2011, 23(10): 2801
作者单位
摘要
聊城大学物理科学与信息工程学院, 山东 聊城 252059
用溶胶-凝胶法分别将3种不同的偶氮材料与聚甲基丙烯酸甲酯(PMMA)掺杂,并制备成旋涂膜,测量了薄膜的厚度、折射率和紫外-可见吸收谱。用实时电晕极化装置测量了3种薄膜二次谐波产生(SHG)强度随时间的变化关系。实验结果表明,含有不同取代基的偶氮材料,取代基给(受)电子能力越强,导致微观一阶超极化率β越大,β越大决定了偶氮分子越容易被极化,最终导致宏观二阶非线性光学特性越大。3种偶氮分子的有效倍频系数分别为0.748,0.794,4.420 pm/V。
材料 非线性光学 二次谐波产生 实时电晕极化 偶氮化合物 
中国激光
2011, 38(5): 0506002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!