谢鹏飞 1,2雷军 1,2张永刚 1,2王丞乾 1,2[ ... ]高松信 1,2
作者单位
摘要
1 中国工程物理研究院 高能激光科学与技术重点实验室,四川 绵阳 621900
2 中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
结温升高是影响主控振荡放大(MOPA)半导体激光芯片输出功率的重要因素,为解决MOPA芯片的多电极封装和高效散热问题,提出了一种正装和热扩散辅助次热沉相结合的封装结构。建立了该封装结构的3D热模型,对比研究了倒装封装结构、正装无辅助次热沉结构与正装有辅助次热沉结构对MOPA半导体激光器结温的影响。计算结果表明,采用正装有辅助次热沉结构与倒装封装结构散热性能接近,且显著优于正装无辅助次热沉结构,结温降低幅度最高可达40%。另外,采用正装有辅助次热沉封装结构的MOPA半导体激光芯片在连续工作条件下输出功率为10.5 W,谱宽可实现半高全宽小于0.1 nm,中心波长随电流的变化约14 pm/A,实现了10 W级MOPA芯片的封装,验证了该封装结构的有效性。
锥形半导体激光器 热设计 封装结构 热沉 master oscillator power amplifier diode laser thermal design package structure heat sink 
强激光与粒子束
2023, 35(5): 051001
吴华玲 1,2雷军 1,2郭林辉 1,2王丞乾 1,2[ ... ]高松信 1,2
作者单位
摘要
1 中国工程物理研究院 高能激光科学与技术重点实验室,四川 绵阳 621900
2 中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
半导体光纤耦合输出泵浦源是光纤激光器的核心器件,其性能直接制约光纤激光器的输出水平。采用COS封装的高功率LD芯片,通过VBG外腔光谱锁定和精密光束整形变换技术,结合偏振合束与精密聚焦耦合技术将18个LD单元耦合进105 μm/NA0.22光纤,获得不低于260 W功率输出。实验表明,该模块在注入电流18 A时,可获得稳定输出连续功率264 W,对应电光效率52%,输出光谱中心波长975.92 nm,谱宽0.51 nm。该设计为获得高功率、高亮度波长稳定泵浦源提供了一条可行途径,光纤耦合输出模块工程化后可广泛应用在光纤激光器泵浦等领域。
半导体激光器 光纤耦合 波长锁定 光束整形 diode laser fiber coupling wavelength-control beam shaping 
强激光与粒子束
2022, 34(6): 061002
谢鹏飞 1,2雷军 1,2吕文强 1,2高松信 1,2[ ... ]王丞乾 1,2
作者单位
摘要
1 中国工程物理研究院 高能激光科学与技术重点实验室,四川 绵阳 621900
2 中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
为降低半导体激光芯片的慢轴远场发散角,提高其慢轴方向的光束质量,设计了横向热流抑制的封装结构。利用热沉间的物理隔离,削弱了半导体激光芯片慢轴方向上的温度梯度,有效降低了半导体激光芯片慢轴方向的发散角。采用热分析模拟了不同封装结构下芯片发光区的温度分布,并对波长915 nm的窄条宽半导体激光芯片进行封装。实验结果表明,在工作电流15 A,封装在隔离槽长4 mm,脊宽120 μm刻槽热沉上的芯片,其慢轴远场发散角由12.25°降低至10.49°,相应的光参量积(BPP)由5.344 mm·mrad 降低至4.5763 mm·mrad,慢轴方向亮度提升了约5.5%。实验结果表明,横向热流抑制的封装结构可以有效地削弱半导体激光芯片慢轴方向上由热透镜效应引起的高阶模激射,从而降低其慢轴远场发散角。
半导体激光器 慢轴发散角 封装结构 横向热流抑制 diode laser slow axis divergence angle package structure lateral heat flow suppression 
强激光与粒子束
2021, 33(2): 021003
李密 1,2,3,*焦宏飞 4邬映臣 1,2胡浩 1,2[ ... ]赵娜 1,2
作者单位
摘要
1 中国工程物理研究院应用电子学研究所, 四川 绵阳 621999
2 中国工程物理研究院高能激光科学与技术重点实验室, 四川 绵阳 621999
3 中国工程物理研究院研究生院, 北京 100088
4 同济大学物理科学与工程学院, 上海 200092
分析了Nd∶YAG板条中产生强烈放大自发辐射(ASE)的原因,开展了抑制高增益激光板条中ASE的理论和实验研究。抽运光占空比为8%,峰值抽运功率为21.38 kW,波长为1064 nm连续探测光的注入光强为4 W/cm 2,在Nd∶YAG板条上、下表面镀制普通倏逝膜和多层复合膜时探测光功率的放大倍率分别为1.82和1.92,Nd∶YAG板条总储能增大了4.6%。实验结果表明:通过对Nd∶YAG板条上、下表面镀制多层复合膜,可在一定程度上抑制板条内的ASE效应,增大激光板条的总储能。
激光光学 放大自发辐射 小信号增益系数 全内反射 多层复合膜 
光学学报
2017, 37(12): 1214003
作者单位
摘要
中国工程物理研究院应用电子学研究所 高能激光科学与技术重点实验室, 四川 绵阳 621900
为了保证Nd:YAG薄片激光器的高功率、高光束质量, 需解决薄片增益介质封装后的均匀散热、低波前畸变等关键问题。分析了封装过程中薄片增益介质的热应力, 模拟了连接界面无缺陷条件下薄片增益介质的热分布, 对封装工艺技术进行改进。优化的封装技术将薄片激光增益介质与微通道冷却器连接在一起, 采用超声扫描显微镜、激光干涉仪对薄片激光器的焊接界面与增益介质表面面形进行测试。结果表明: 该封装技术实现了直径Φ80 mm的大口径YAG薄片与冷却器焊料层均匀、无空洞的界面连接, 同时减小了焊接后薄片的波前畸变, Φ60 mm口径内面形畸变PV值小于1 μm, 均方根RMS值小于0.15 μm。该技术封装的单模块Nd:YAG薄片激光器输出功率达到2.3 kW。
薄片激光增益介质 封装 热均匀性 波前畸变 thin disk laser gain medium packaging thermal homogeneity wave-front distortion 
红外与激光工程
2017, 46(12): 1205003
王君涛 1,2,*汪丹 1,2苏华 2,3周唐建 1,2[ ... ]高清松 1,2
作者单位
摘要
1 中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
2 中国工程物理研究院高能激光科学与技术重点实验室, 四川 绵阳 621900
3 北京应用物理与计算数学研究所, 北京 100094
以Nd∶YAG平面波导为激光放大器增益介质, 研究了1064 nm激光在放大过程中光光效率的影响因素; 采用基于棒状Nd∶YAG的1064 nm自由运转振荡器为种子源, 放大器抽运源为808 nm半导体激光器阵列, 抽运光脉宽与种子光脉宽相同且同步输出; Nd∶YAG平面波导的尺寸为60 mm×10 mm×1 mm, 芯层厚度为100 μm。对比研究了种子光能量、抽运能量和抽运方向对激光放大效率的影响。结果表明, 当注入种子光能量为10 mJ时, 实现了100 Hz脉冲重复频率下最大能量为713 mJ的准连续激光输出, 此时的抽运能量为1478 mJ, 对应的光光效率为47.6%。
激光器 激光放大器 平面波导 放大效率 端面抽运 
中国激光
2017, 44(12): 1201005
李密 1,2,3,*胡浩 1,2唐淳 1,2雷军 1,2[ ... ]邬映臣 1,2
作者单位
摘要
1 中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
2 中国工程物理研究院高能激光科学与技术重点实验室, 四川 绵阳 621900
3 中国工程物理研究院研究生院, 北京 100088
分析了传导冷却与端面抽运的Nd∶YAG板条激光器边缘畸变的形成原因, 并进行了抑制边缘畸变的实验研究。根据实验参数进行了数值模拟, 模拟结果与实验结果吻合。以液态环氧胶为导热材料对激光器板条侧面进行实时冷却, 可增加板条内部荧光从侧面逸出的能量比例, 从而减小放大自发辐射, 边缘畸变量峰谷值约减小50%。该方法有利于提高板条激光器的光束质量和输出功率。
激光技术 板条激光器 透射波前 边缘畸变 传导冷却 
光学学报
2016, 36(12): 1214003
作者单位
摘要
中国工程物理研究院 应用电子学研究所, 高能激光科学与技术重点实验室, 四川 绵阳 621900
为实现大尺寸、高储能的Nd: YAG板条激光增益介质模块的高可靠性工作,必须找到合适的封装工艺解决大尺寸无空洞、低热阻界面连接问题和界面低应力、低透射波前畸变问题。在充分了解板条激光增益介质和冷却单元的特性后,选择了延展性好的铟作为焊料,实验得到最佳焊料层厚度,通过改进封装工艺的钎焊技术将这两部分可靠地连接在一起。改进的封装工艺实现了钎焊面积大于40 cm2,空洞率小于0.5%,最大空洞面积小于1 mm2的技术指标,工艺重复性大于90%。通过对焊料层的优化实现了尺寸为150.2 mm×30 mm×2.5 mm板条激光增益介质静态透射波前畸变小于1 μm,成品率优于80%,静态透射波前畸变小于1.5 μm的模块成品率接近100%的技术指标。采用改进封装工艺焊接的单模块Nd: YAG板条激光器稳定输出功率达到4000 W。
板条激光增益介质 封装 无空洞 波前畸变 slab laser gain medium packaging voids free wave-front distortion 
强激光与粒子束
2016, 28(9): 091002
李密 1,2,3,*胡浩 2,3唐淳 2,3雷军 2,3[ ... ]邬映臣 2,3
作者单位
摘要
1 中国工程物理研究院研究生院, 北京 100088
2 中国工程物理研究院高能激光科学与技术重点实验室, 四川 绵阳 621900
3 中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
开展了高功率双掺杂浓度板条激光技术的理论与实验研究,通过分段掺杂有效降低了板条长度方向上的吸收抽运功率密度的不均匀性,显著提高了单个激光板条的平均储能密度,总储能提高了39%。当二极管总抽运功率为15 kW时,3 kW的种子光源通过双掺杂板条可提取5.16 kW的功率,这个数值相比单掺杂板条增加了36%,且光光转换效率为34.4%,与理论预期基本相符。
激光技术 板条激光器 光光转换效率 分段掺杂 储能密度 
光学学报
2016, 36(9): 0914004
王昭 1,2,*雷军 1,2谭昊 1,2高松信 1,2武德勇 1,2
作者单位
摘要
1 中国工程物理研究院 应用电子学研究所, 四川 绵阳 621900
2 中国工程物理研究院 高能激光科学与技术重点实验室, 四川 绵阳 621900
半导体激光器封装工艺过程对于激光器的输出特性、寿命等性能有重要影响,其中焊料的选择和焊接工艺是最关键的因素。采用半自动焊接系统将mini-bar芯片通过In焊料直接焊接在Cu热沉上,并通过硬件改进、软件优化、放缓成像过程等措施实现了高精度、高可靠性的焊接。通过对激光器的性能测试发现,其焊接功率稳定,焊接精度均值可达20 μm,“smile”效应值可以控制在0.5 μm。
二极管激光器 焊接 封装 diode laser soldering mini-bar mini-bar packaging 
强激光与粒子束
2016, 28(8): 28081002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!