作者单位
摘要
1 中国科学院电工研究所, 北京 100190中国科学院大学, 北京 100049
2 中国科学院电工研究所, 北京 100190
高压套管是电力系统的核心部件, 对高压套管的绝缘状态进行检测具有重要的实际意义。 由于目前常见的绝缘状态在线监测设备难以适用于安装位置特殊、 体型较小的高压套管, 研发适用于高压套管的检测系统势在必行。 相较于传统金属结构的光声池, 采用全绝缘结构光声池能够在进行原位检测时不形成悬浮电位, 从而能够规避在高压套管内引发局部放电等故障, 是对高压套管绝缘状态进行检测的理论可行方案之一。 探究了适用于高压套管检测的原位检测系统重要部件全绝缘结构光声传感器的可行性。 分别从基本原理、 仿真计算及实验验证三个方面对全绝缘结构光声池进行了分析及论证。 首先, 就光声池材料对光声信号的影响进行了理论分析, 讨论了相较于传统黄铜材料, 由绝缘材料石英制成的光声池可能存在的问题。 然后, 在此基础上采用COMSOL Multiphysics建立了共振式光声池的仿真模型并进行了声学和热学相关计算, 对理论分析的结果进行验证, 并分析了实际情况下石英光声池的理论表现。 最后, 建立基于石英光声池的光声光谱检测系统实验平台, 结合波长调制及二次谐波方法对微量乙炔气体进行定量检测, 用于对石英光声池的可行性进行验证。 仿真计算结果表明, 类似于黄铜材料, 石英材料光声池同样具备对微量气体进行定量检测的能力。 实验结果表明, 基于石英光声池的检测系统对乙炔气体的检测极限能够达到0.16 μL·L-1, 满足相关标准中油浸式电气设备对乙炔检测的需求。 因此, 以石英为材质的共振式光声池具备应用于高压套管原位检测的潜力。
光声光谱 光声池 绝缘材料 仿真计算 Photoacoustic spectroscopy Photoacoustic cell Insulating material Simulation calculation 
光谱学与光谱分析
2023, 43(9): 2922
作者单位
摘要
1 南京邮电大学集成电路科学与工程学院,江苏 南京 210023
2 射频集成与微组装技术国家地方联合工程实验室,江苏 南京 210023
3 核探测与核电子学国家重点实验室,安徽 合肥 244199
基于0.18 μm BCD工艺实现了一种高灵敏度、低暗计数噪声的近红外单光子直接飞行时间(dTOF)探测器。集成的单光子雪崩二极管(SPAD)探测器件采用新型的高压p阱/n+埋层作为深结雪崩倍增区的结构,显著提高了对近红外光子的探测概率;采用低掺杂的外延层作为虚拟保护环,有效减小了器件暗计数噪声。dTOF探测器读出电路采用三步式混合结构的时间数字转换器(TDC),获得了高时间分辨率和大动态范围。测试结果表明,SPAD器件在5 V过偏压下的光子探测概率(PDP)峰值达到45%,在905 nm近红外波长处的PDP大于7.6%,暗计数率(DCR)小于200 Hz。读出电路实现了130 ps的高时间分辨率和258 ns的动态范围,差分非线性度(DNL)和积分非线性度(INL)均小于±1 LSB(1 LSB=130 ps)。该dTOF探测器具有人眼安全阈值高、灵敏度高、噪声低和线性度好的优点,可应用于低成本、高精度的激光雷达测距系统。
探测器 直接飞行时间 单光子雪崩二极管 光子探测概率 暗计数率 时间数字转换器 
光学学报
2023, 43(20): 2004002
作者单位
摘要
中国科学院电工研究所, 北京 100190
局部空气放电是导致高压输变电设备绝缘劣化的重要因素。 空气放电中丰富的发射光谱信息与放电特征存在直接映射关系。 采用针-板电极模拟了空气电晕放电的发展过程, 并检测了放电由弱变强过程中的“紫外-可见光-近红外”波段在200~980 nm范围内的发射光谱。 放电初期的发射光谱主要由氮气分子N2的带状光谱组成, 分别为N2第二正带系(second positive system, SPS)和N2第一正带系(first positive system, FPS)。 放电程度加深后, 发生能级跃迁的粒子种类更加丰富, 由此产生了带状光谱与线状光谱相互交叠的复杂谱线, 光谱范围也由放电初期的280~460 nm扩展至200~980 nm。 放电处于临界击穿时, 发射光谱的强度急剧增加, 强度最高值出现在500.715和777.202 nm处, 分别对应氮离子N+和氧原子O的辐射谱线, 这意味着微观放电过程再次发生改变。 基于空气放电机理分析得到: 放电初期、 放电加深、 放电临界击穿三个阶段中强度占优的谱峰或谱带分别由N2, NO与O和N+辐射跃迁所致, 这由放电间隙的能量所决定, 其特征光谱分别为336.907, 239.687和500.715 nm。 放电初期, 336.907 nm处的强度绝对占优, 239.687和500.715 nm处的相对强度极小; 放电程度加深时, 239.687 nm处的强度占优, 500.715 nm处的相对强度极小; 临界击穿时, 500.715 nm处的强度占优, 336.907 nm处的强度最弱。 空气电晕放电的200~980 nm光谱范围内, 紫外波段、 可见光波段和近红外波段的光子数虽然都随着施加电压的升高而增加, 但各波段光子数的归一化结果表明: 随着放电程度的加深, 紫外波段的光子比例逐渐减小, 可见光波段的光子比例逐渐增加, 近红外波段光子比例变化相对较小。 不同放电阶段的“紫外-可见光-近红外”波段的相对光子数分布有较明显的差异, 可以反映放电的发展程度。
空气电晕放电 发射光谱 放电过程 特征谱线 Air corona discharge Optical emission spectroscopy Discharge process Characteristic spectrum wavelength 
光谱学与光谱分析
2022, 42(9): 2956
作者单位
摘要
1 上海海事大学物流工程学院, 上海 201306
2 约克大学电子工程学院, 英国 约克 YO105DD
为了使岸桥表面锈蚀检测任务在部署到嵌入式设备和移动设备中获取更快的推理速度,在不牺牲精度的前提下提出改进的轻量化目标检测网络MobileNetV2SSDLiteV1/V2。改进后的网络采用5个卷积层的特征映射作为检测器输入,并使用3×3深度卷积预测分类和位置得分。为了减少骨干网络的参数量,将原始17个线性残差模瓶颈块结构设计成14个,并将分辨率为256 pixel×256 pixel的图像作为网络输入,同时改变原始默认框的系数,使先验框的个数减少了82.51%,接着将所有层进行批处理归一化并从零开始训练网络。以上改进可以使网络参数变为0.96×10 6,减少至原来的1/4,网络的浮点运算次数为0.12×10 9,较原始减少81.25%,mAP值高达77.40%,推理速度达45 frame/s。
机器视觉 深度学习 目标检测 岸桥 轻量级网络 边缘计算 
激光与光电子学进展
2021, 58(16): 1615006
作者单位
摘要
基于波长调制光谱(WMS)信号二次谐波分量检测的光声光谱(PAS)气体检测技术在电力、 化工和医疗等行业得到了广泛应用。 虽然采用二次谐波分量检测技术可以有效减小光声信号中的相关噪声, 但检测信号中仍存在检测系统的非相关噪声, 影响了光声检测系统对痕量气体的检测能力以及测试结果的准确度。 为研究如何削弱光声光谱检测系统的非相关噪声对二次谐波信号的影响, 改进检测系统的最低检测限, 提高测量准确度, 搭建了一套以可调谐分布反馈式(DFB)半导体激光器为激励光源的一阶纵向共振光声光谱气体检测系统, 首次提出了使用快速傅里叶变换(FFT)对光声二次谐波信号进行滤波的新方法。 首先根据气体光声光谱检测系统的噪声频谱对锯齿波扫描信号频率进行了优化选择, 使检测系统背景噪声对光声检测信号的影响降至最小, 然后使用FFT对与扫描锯齿波同频率的光声二次谐波信号的基波分量进行提取, 虽然提取出的基波分量幅值小于光声信号二次谐波分量最大值, 但由于光声检测系统背景噪声减小的更多, 实现了改进光声检测系统最低检测限的目的。 通过对102, 75.1, 50, 30.3, 15.3, 7.7, 1, 0.79, 0.57, 0.35和0.17 μL·L-1的C2H2/N2混合气体测试结果进行分析和对比, 使用FFT对光声二次谐波信号进行滤波处理后, 测试结果读数非常稳定, 当信噪比为3时, 系统的最低检测限从0.43 μL·L-1降低为30.6 nL·L-1, 说明FFT滤波对于消除波长调制光谱信号二次谐波分量中的非相关噪声非常有效, 可以提高测量准确度和改进光声光谱检测系统最低检测限。 研究成果可为使用波长调制光谱信号二次谐波分量检测技术的应用提供一定参考。
光声光谱 快速傅里叶变换 二次谐波检测 最低检测限 气体检测 非相关噪声 Photoacoustic spectroscopy Fast Fourier transform Second harmonic detection Limit of detection Gas detection Non-correlation noise 
光谱学与光谱分析
2020, 40(10): 2996
作者单位
摘要
北京工商大学材料与机械工程学院, 北京 100048
采用选区激光熔化(SLM)技术对200 μm层厚的气雾化316L粉末进行单熔道及块体实验,通过分析成型样件的致密度、微观组织、拉伸性能、缺陷机理等进行了工艺优化。结果表明,当激光功率为400 W,曝光时间为120~160 μs,搭接率为50%~60%时,成型样件的致密度可达99.99%。SLM成型过程中产生的未熔合缺陷可以通过调整工艺参数进行避免;虽然微型孔洞及球化现象无法完全消除,但通过缩短曝光时间可以减小球化尺寸。SLM成型样件的微观晶粒为等轴晶及柱状晶,其拉伸性能良好,屈服强度为530 MPa,拉伸强度为635 MPa,延伸率为31%。
激光技术 选区激光熔化 微观组织 拉伸性能 
激光与光电子学进展
2019, 56(1): 011401
作者单位
摘要
1 中国海洋大学 信息科学与工程学院, 山东 青岛 266100
2 青岛农业大学 理学与信息科学学院, 山东 青岛 266109
3 山东烟草研究院有限公司, 山东 济南250101
近红外检测作为一种快速无损的检测方法得到广泛关注。但光谱中存在大量噪声以及光谱数据的高维度和非线性等特点影响了分类模型的准确率。将深信网络(DBN)的理论改进并引入光谱特征学习中, 解决高维特征间非线性关系的学习问题, 采用逐层训练策略和随机梯度上升法分别进行网络预训练和微调获得网络权值; 并结合支持向量机(SVM)建立近红外光谱多分类模型DBN-SVM。与基于主成分分析的分类模型PCA-SVM和基于线性判别分析的LDA-SVM分类模型进行应用比较。结果表明: DBN-SVM算法能有效地学习高维数据中的内在结构和非线性关系, 由该算法构建的模型具有良好的特征学习能力和分类识别能力, 而且在稳健性、各类别的灵敏度和特效度也更优。
深度信念网络 近红外光谱 特征学习 分类模型 deep belief network near infrared spectral feature learning classification model 
红外与激光工程
2019, 48(4): 0404001
作者单位
摘要
北京工商大学材料与机械工程学院, 北京 100048
采用选区激光熔化技术研究了扫描速度和线间距对316L不锈钢粉末成形的影响。结果表明,当激光功率为380 W,铺粉层厚为50 μm,线间距为90~130 μm,扫描速度为750 mm·s -1时,成形试样的致密度最高达99.99%,屈服强度、拉伸强度和延伸率分别为625 MPa、537 MPa和38%。扫描速度对试样缺陷的形成有很大影响。适当增大扫描速度可细化试样的晶粒,提高其力学性能。
激光技术 选区激光熔化 高速率 成形缺陷 微观组织 力学性能 
激光与光电子学进展
2019, 56(10): 101403
邹铭敏 1,2,*陈良富 1陶金花 1苏林 1[ ... ]余超 1,2
作者单位
摘要
1 中国科学院遥感应用研究所,遥感科学国家重点实验室,北京 100101
2 中国科学院研究生院,北京 100049
近红外通道观测大气CO2含量是利用其对太阳辐射的吸收作用,温度是影响吸收气体吸收的一个重要因子,文中讨论了CO2观测的温度敏感性.首先阐述了温度对气体吸收谱线的强度、增宽的影响; 然后根据CO2反演过程中使用的大气温度产品的精度水平,利用逐线积分辐射传输模型模拟计算了1 K的随机温度误差对垂直大气观测的影响,以及由此导致的CO2反演误差,并与模拟的1 ppm和2 ppm的CO2浓度变化所造成的观测与反演变化量进行了比较.通过对比分析六种大气模式下的模拟计算结果,得出1 K大气随机温度误差是影响高精度大气CO2观测反演的重要因子.
谱线强度 谱线加宽 线型函数 辐射传输模型 line intensity line broaden line-shape function radiative transfer mode 
红外与毫米波学报
2012, 31(5): 455
作者单位
摘要
1 东北师范大学 物理学院, 吉林 长春130024
2 长春理工大学 理学院, 吉林 长春130022
以直径1 μm的脂质体为空化研究对象,从修正的Rayleigh空化方程入手,研究机械系数(MI)对300 kHz和1 MHz超声作用时空化效应的影响。脂质体的药物释放以超声作用前后脂质体中钙黄绿素的荧光强度为量度。模拟结果表明:在微泡振荡过程中,由超声波驱动产生的负向最大泡壁运动速度促使微泡半径从最大快速减小接近于零,微泡积聚到最大能量。对于300 kHz和1 MHz的激励超声,存在一个拐点(MI)值,当MI小于接近0.4时,1 MHz微泡半径变化幅度强于300 kHz; 当MI>0.4时,300 kHz微泡半径变化幅度强于1 MHz。这一结果预示在此范围内,300 kHz的药物释放效果好于1 MHz。本研究为超声空化效应研究及超声药物释放应用提供了理论依据。
超声空化效应 脂质体药物释放 动力学行为 cavitation drug release of liposome microbubble dynamics 
发光学报
2012, 33(2): 182

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!