作者单位
摘要
吉林大学 电子科学与工程学院 集成光电子学国家重点联合实验室吉林大学实验区, 长春 130012
在Si/SiO2衬底上生长金属银作为阳极,4,4,4-tris(3-methylphenylpheny-lamino)-triphenylamine(m-MTDATA):MoOx/m-MTDATA/N,N-bis-(1-naphthyl)-N,N-diphenyl-1,1-biphenyl-4,4-diamine(NPB)作为空穴注入及传输层,发光层采用4,4-N,N-dicarbazole-biphenyl(CBP)掺杂磷光染料(1-(phenyl)isoquinoline)iridium(III) acetylanetonate(Ir(piq)2(acac))的结构,4,7-di-phenyl-1,10-phenanthroline(BPhen)作为空穴阻挡层及电子传输层,阴极为LiF(1 nm)/Al(2 nm)/Ag(20 nm)复合阴极结构.通过在光取出的复合阴极上方生长一层CBP光学覆盖层,有效地改善了复合阴极膜系的透射率,从而改善了顶发射结构的光学耦合输出特性,在提高器件的正向发光效率的同时还使色坐标往深红光区移动.并且生长光学覆盖层结构的器件角度依赖特性明显得到改善,这对于制作高显示质量的显示器件具有重要意义.在原有结构的基础上增加20 nm的NPB掺杂磷光染料Ir(piq)2(acac)作发光层,从而得到双发光层结构为NPB:Ir(piq)2(acac)(1%,20 nm)/CBP:Ir(piq)2(acac)(1%, 20 nm).由于NPB具有较高的空穴迁移率,避免了由于光学厚度的增加而引起器件工作电压的大幅升高,而双发光层的结构有利于增大激子复合区域,提高辐射复合几率,减少非辐射损耗,实现主客体之间高效的三线态能量传递,相对单发光层顶发射结构,双发光层结构不仅提高了器件的发光效率,而且改善了器件的色坐标.
红光顶发射有机电致发光器件 CBP覆盖层 双发光层 色纯度 角度依赖特性 Top-emitting organic light-emitting device CBP capping layer Dual emitting layer Color purity Angle-dependent character 
光子学报
2013, 42(1): 1
作者单位
摘要
河北大学 物理科学与技术学院, 河北 保定071002
以铱配合物红色磷光体Ir(piq)2( acac)为掺杂剂,制备了基于CBP材料的一系列红色电致磷光器件(PLED),其结构为ITO/CuPC(1 nm)/Ir(piq)2(acac)∶CBP(25 nm)/BCP(10 nm)/Alq3 (35 nm)/LiF(1 nm)/Al(100 nm), 对4种不同的掺杂剂浓度进行了比较,研究了它们的电致发光特性。得出了Ir(piq)2(acac)的最佳掺杂比为8%,此时器件的色坐标都非常接近标准红色,且色纯度超过了98%以上;在16 V时,色坐标为(x=0.67,y=0.32),色纯度为99.74%,基本满足了全色显示对红色发光的要求。
红色磷光有机电致发光 掺杂 red-phosphorescent organic light-emitting CBP CBP doping 
发光学报
2010, 31(1): 25
作者单位
摘要
1 北京航空航天大学 材料物理与化学中心, 北京100083
2 上海大学 新型显示技术实验室, 上海200072
以聚合物发光材料MEH-PPV为发光层的聚合物发光二极管的ITO阳极与发光层之间,加入一层溶解于氯仿中的有机小分子CBP,能显著改善发光器件的电流特性。在电压较低的时候能提高电流,在电压较高的时候能抑制电流,从而增加工作电压范围。此外,器件的电流效率也能得到显著的提高。实验结果表明,加入CBP层后,在低电压时,CBP层能够减缓空穴注入到发光层中,将其限制在CBP层,从而在器件中形成一个内电场,有助于电子的传输,降低开启电压,提高发光亮度。在电压较高时,CBP作为电子阻挡层,能阻挡电子漏泄到阳极,从而使在复合区的空穴与少数载流子电子的复合效率提高,改善器件的性能。
聚合物发光二极管 电流效率 CBP CBP MEH-PPV MEH-PPV polymer light-emitting diodes current efficiency 
发光学报
2009, 30(2): 162

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!