作者单位
摘要
1 太原理工大学,新材料界面科学与工程教育部重点实验室,太原 030024
2 太原理工大学轻纺工程学院,太原 030024
3 太原理工大学材料科学与工程学院,太原 030024
4 陕西科技大学,材料原子分子科学研究所,西安 710021
GaAs基980 nm半导体激光器在材料加工、通信和医疗等领域有着重要应用。应变量子阱结构的出现提高了GaAs基半导体激光器的转换效率、输出功率和可靠性。本文综述了高功率GaAs基量子阱激光器历史发展,介绍了高功率半导体激光器的外延结构、芯片结构和封装结构设计,重点阐述了影响高功率GaAs基量子阱激光器光电性能、散热和实际应用的问题。针对以上问题讨论了相应解决方案及研究成果,并指出了各个方案的不足之处和改进方向。最后,总结了高功率半导体激光器的发展现状,对高功率半导体激光器发展方向进行了展望。
GaAs基 高功率 980 nm半导体激光器 应变量子阱结构 转换效率 光电性能 GaAs based high power 980 nm semiconductor laser strain quantum well conversion efficiency optical-electrical performance 
人工晶体学报
2021, 50(2): 381
作者单位
摘要
航天工程大学研究生院, 北京 101416
三阶砷化镓电池具有较高的光电转换效率, 是卫星帆板的主要材料。 利用卫星帆板的散射光谱特性, 可以辅助判断帆板姿态以及卫星工作状态, 对空间目标识别具有重要意义。 搭建了空间目标表面材料散射光谱测量系统, 对太阳能电池样片散射光谱进行测量。 测量系统主要由REFLET 180S 和FieldSpec@4 光纤光谱仪组成。 REFLET 180S能提供暗背景、 稳定光源和高精度转台, 光源光谱范围400~1 800 nm, 转台角分辨率为0.01°。 FieldSpec@4光谱仪具有高的光谱分辨率(3 nm@700 nm, 10 nm@1 400/2 100 nm)。 针对电池样片强镜反特性, 选择标准平面反射镜作为定标体, 测量入射角为5°, 15°, 30°, 45°和60°, 反射角为镜反射方向±2°, 角度间隔为0.1°。 测量结果发现三阶砷化镓电池在可见光波段(600~900 nm)散射光谱存在三个明显吸收峰, 并且随着入射角的增加, 吸收峰出现向左“迁移”特性; 在近红外波段(900~1 800 nm)散射光谱出现类周期性震荡特性, 而硅电池散射光谱并没有这些特性。 三阶砷化镓电池结构复杂, 将其物理结构简化为DAR层和三个半导体吸收膜层: 顶电池GaInP层、 中电池GaAs层和衬底Ge层。 基于薄膜干涉理论, 利用等效光学导纳法, 对三阶砷化镓电池散射光谱进行建模。 仿真光谱基本拟合出可见光波段的吸收特性以及近红外波段的周期性震荡特性, 说明利用薄膜干涉理论建立反射率模型的正确性。 利用光谱仿真模型, 分析不同膜层对三阶砷化镓散射光谱的影响。 结果表明: DAR层主要作用是降低光谱反射率, 对光谱形状影响不大; Ge层对散射光谱没有影响, 主要作用是增加光的透射率和吸收效率; GaInP层和GaAs层对散射光谱形状起主要作用, GaAs层是造成近红外波段干涉特性的主要原因; GaInP层是引起可见光波段吸收特性的主要原因, 同时对近红外波段干涉曲线的振幅和频率起调制作用。 研究结果可为卫星太阳能帆板和电池碎片识别提供数据支撑。
卫星 三阶砷化镓电池 散射光谱 吸收峰 震荡特性 薄膜干涉 Satellite GaAs-based triple-junction solar cell Scattering Spectrum Absorption peak Oscillation characteristic Thin-film interference 
光谱学与光谱分析
2020, 40(10): 3092
作者单位
摘要
1 上海师范大学,上海 200234
2 中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083
单层石墨烯具有较低的固有光吸收效率,且材料中含有较多的缺陷,导致仅依靠石墨烯本身很难制备高性能的光电器件。通过石墨烯与半导体材料复合形成异质结构的方法可以克服这一瓶颈。本工作中利用石墨烯/砷化镓高迁移率异质晶体管结构制备了毫米波光电探测器,有效地提升了二维电子气特性,大幅度提高了器件在室温条件下的毫米波响应和探测能力。实验证明,400 mV的偏置电压下,该器件在25 GHz波段的获得了20.6V?W-1响应率,响应时间为9.8 μs,噪声等效功率为3.2×10-10 W?Hz-1/2。在太赫兹波0.12 THz下响应率仍然达到了4.6V?W-1,响应时间为10 μs,噪声等效功率为1.4×10-9 W?Hz-1/2。该工作展示了石墨烯/砷化镓异质结构毫米波太赫兹探测器的巨大应用前景。
砷化镓 石墨烯 太赫兹 异质结构 GaAs-based HEMT HEMT graphene Terahertz heterostructure 
红外与毫米波学报
2020, 39(5): 533

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!