作者单位
摘要
1 汕头大学工学院电子信息工程系, 广东 汕头 515063
2 中国地质科学院地球物理地球化学勘查研究所, 河北 廊坊 065000中国地质调查局土地质量地球化学调查评价研究中心, 河北 廊坊 065000
3 汕头大学工学院机械工程系, 广东 汕头 515063
高光谱技术可提供近乎连续的地物光谱曲线, 对土壤组分定量反演具有极大的潜力。 针对受污染土壤, 通过综合分析实验室测定的土壤镉(Cd)含量和同期获取的高光谱数据, 提出了一种基于深度森林2021(Deep Forest 2021, DF21)算法的高光谱土壤Cd含量反演模型。 采用原始光谱数据(OS)和其经主成分分析(PCA)降维处理后的数据作为模型输入参数, 分别构建了基于原始光谱数据的DF21(OS-DF21)模型和基于PCA降维数据的DF21(PCA-DF21)模型。 随后, 基于相同训练样本, OS-DF21和PCA-DF21分别建立了土壤Cd含量和输入参量之间的关系, 并据此对检验样本土壤Cd含量进行了定量反演和对比分析。 选取决定系数(R2)、 均方根误差(RMSE)和相对分析误差(RPD)对模型反演性能进行了评估。 分析结果表明: OS-DF21模型反演精度最佳, 其R2、 RMSE和RPD分别可达0.873、 0.120和2.892。 相比而言, PCA降维处理虽可降低光谱数据的冗余度, 但PCA-DF21模型的预测能力有所下降。 尽管如此, PCA-DF21模型仍表现出较好的土壤Cd含量反演能力, 其R2、 RMSE和RPD分别为0.779, 0.159和2.190。 因此, DF21算法可作为研究区及类似环境区域的土壤重金属快速勘测的补充手段。
土壤Cd含量 深度森林DF21 主成分分析(PCA) 高光谱技术 反演模型 Soil Cd concentration DF21 Principal component analysis (PCA) Hyperspectral technology Retrieval model 
光谱学与光谱分析
2023, 43(8): 2638
作者单位
摘要
华东交通大学智能机电装备创新研究院, 江西 南昌 330013
稻米霉变会引起营养物质流失, 同时产生有毒物质, 不仅降低其自身品质, 还会感染其他正常稻米。 为减少霉变引起的稻米损耗, 需及时分离霉变稻米。 高光谱技术具有快速、 无损的特点, 因此, 尝试利用高光谱技术对稻米霉变情况进行检测。 发芽稻米与发霉稻米具有相似的光谱特征, 易被误判为发霉稻米, 影响后续稻米霉变程度的检测, 因此, 提出利用高光谱技术结合多种预处理及判别模型区分发芽稻米与发霉稻米, 并对不同霉变程度的稻米进行判别。 将正常、 发芽、 发霉和发芽发霉的稻米样本建立模型进行区分检测, 并对轻度、 中度、 重度和完全发霉的稻米样本进行判别。 利用高光谱采集仪器对正常、 发芽、 发霉和发霉发芽的稻米样本进行光谱图像采集, 提取采集图像感兴趣区域(ROI)的光谱, 以ROI内光谱的平均反射率作为稻米样本的光谱特征。 对提取的光谱数据进行SNV、 Normalize和MSC等预处理; 利用KS算法将样本以1∶3的比例均匀地划分为用于验证模型效果的预测集和建立光谱与样本关系的建模集; 分别建立PLSR、 SVM和RF模型, 以3种模型的预测集正确率评价各模型预测效果, 挑选出效果最优的判别模型。 在正常、 发芽、 发霉和发芽发霉稻米的检测中, 得到最优的判别模型为基线校正法预处理后的随机森林(Baseline-RF)模型, Baseline-RF模型的预测集判别准确率为100%; 在稻米霉变程度的检测中, 通过对不同模型的预测结果进行比较得出, SNV-RF模型的预测集中未出现误判样本, 表现出最优的判别效果。 为简化模型, 在冗长的原始光谱中提取特征波长, 以特征波长光谱建立SNV-RF模型, 结果显示利用CARS算法挑选后的特征波长具有较好的判别能力, 整体的判别准确率为97.5%。 实验结果显示高光谱技术结合CARS-SNV-RF模型能够快速准确地判别稻米的霉变程度, 为霉变稻米的快速判别提供一定的理论基础和实验参考, 对提高稻米品质、 减少稻米浪费具有重要意义。
高光谱技术 波段筛选 稻米霉变 快速检测 Hyperspectral technology Waveband selection Rice moldy Rapid detection 
光谱学与光谱分析
2023, 43(8): 2391
作者单位
摘要
1 国网四川省电力公司电力科学研究院, 四川 成都 600072
2 西南交通大学 电气工程学院, 四川 成都 611756
污闪是威胁电网安全可靠运行的重要原因之一, 污秽类型差异将直接影响闪络电压大小。因此, 及时掌握绝缘子污秽类型信息对预防污闪有重要作用。为此提出了一种基于SAM-ED光谱匹配的绝缘子污秽类型检测方法。采集不同污秽类型样本高光谱数据, 经黑白校正及多元散射校正(MSC)去除噪声等干扰因素;利用竞争自适应重加权采样法(CARS)对光谱数据进行特征选取, 分别在特征波段和全波段范围内通过SAM-ED光谱匹配法将测试组样本光谱与参考光谱进行匹配, 根据匹配结果对样本进行分类;实验结果表明: 相比于光谱角匹配法和最小距离法, SAM-ED光谱匹配法检测效果更好;基于全波长数据进行SAM-ED光谱匹配准确率可达95%, 基于特征波长数据进行SAM-ED光谱匹配准确率可达98.33%。
高光谱技术 绝缘子 污秽类型 光谱匹配 非接触检测 hyperspectral technology insulator pollution type Spectral matching Non-contact detection 
光散射学报
2023, 35(3): 296
作者单位
摘要
西南大学工程技术学院, 重庆 400716
当今全球范围内有机食品行业发展迅速, 体现出消费者对食品质量安全的重视。 相比于普通鸡蛋, 有机鸡蛋因严格的生产条件以及更高的营养价值生产成本更高、 售价更贵。 市面上所销售的有机鸡蛋虽取得了严格有机食品认证标识, 但依旧不能阻止不法份子将普通鸡蛋冒充有机鸡蛋销售, 从而谋取利润。 这一行为不仅会损害有机鸡蛋生产商的利益, 也降低了人们对有机食品的信任度, 为此需要一种有效的对有机鸡蛋和普通鸡蛋无损鉴别方法。 使用高光谱技术透射成像的方式, 可以获取物质内部的信息, 以有机鸡蛋和普通鸡蛋为试验对象, 采集鸡蛋样本364~1 025 nm波长范围的高光谱图像数据, 从采集到的数据中提取出鸡蛋蛋清和蛋黄感兴趣区域(ROI)的平均透射光谱数据。 根据透射光谱曲线图筛选出有机鸡蛋与普通鸡蛋光谱响应差异明显的波段区间, 分别通过偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)建立鸡蛋类别的鉴别模型, 结果表明模型分别根据蛋黄区域与蛋清区域数据进行建模的鉴别准确率相近, 进一步对蛋黄区域数据进行分析。 由于高光谱数据量大且存在大量冗余信息, 给数据采集、 存储、 传输和建模处理都带来不便, 因此分别通过连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对蛋黄ROI数据进行降维处理, 剔除了大量冗余信息后再建模。 最终, 使用对蛋黄ROI区域运用SPA降维后得到的23个特征波长建立的SPA-SVM鉴别模型在测试集的准确率最高达到94.2%。 结果表明, 通过高光谱技术对有机鸡蛋和普通鸡蛋进行无损鉴别有一定效果。
鸡蛋 有机食品 高光谱技术 光谱降维 鉴别 Eggs Organic food Hyperspectral technology Spectral dimension reduction Identification 
光谱学与光谱分析
2022, 42(4): 1222
作者单位
摘要
中国农业大学信息与电子工程学院, 北京 100083
随着小康社会的全面建成, 居民对生活水平的要求已经从温饱过渡到高质量, 特别是对饮食安全问题尤为重视, 但是“变质肉”、 “掺假肉”、 “添加肉”和“注水肉”等食品质量安全事故频发, 已经严重威胁到了我国居民生命安全并阻碍了市场良性发展。 目前, 红肉质量检测主要依托复杂的理化实验完成, 对红肉产品具有强烈的破坏性, 仅适用于市场监管部门的抽查。 高光谱技术作为一种原位无损、 高通量、 快速的智能检测技术, 为解决传统检测方法在红肉生产销售全产业链中缺乏操作可行性提供了有效的技术手段, 可以极大的促进我国红肉质量安全监管体系的发展与健全。 综述了近几年国内外关于红肉质量高光谱无损检测研究的最新进展: 首先, 总结了基于高光谱无损检测技术构建红肉质量无损检测模型的优缺点, 其优势是具有图谱合一、 高分辨率等特性, 为模型多样性提供良好的数据基础; 其劣势是高光谱数据的冗余度高、 信噪比低、 非线性强, 对模型效率造成一定影响。 然后, 重点分析了红肉质量无损检测建模中关键算法的研究进展: (1)感兴趣区域一般通过手动获取, 感兴趣区域的自动分离方法是目前研究的重点之一; (2)光谱预处理算法主要通过观察光谱信号或根据建模效果反推选择, 目前还未形成标准通用的预处理算法; (3)综合红肉光谱和图像特征, 能够全面反映红肉的质量特性, 为建模提供了良好的数据基础; (4)线性模型的发展应用较为成熟, 稳定性较好, 但是面向复杂的红肉质量检测环境, 非线性模型的研究潜力更加良好。 最后, 通过综述近几年红肉质量的高光谱无损检测研究成果, 展望了未来的研究中, 提高算法自动化、 充分利用图谱信息、 加强非线性模型的应用将成为重点研究方向。
高光谱技术 红肉质量安全 特征融合 无损检测 Hyperspectral technology The red meat quality Feature fusion Non-destructive testing 
光谱学与光谱分析
2022, 42(7): 1993
作者单位
摘要
1 河海大学地球科学与工程学院, 江苏 南京 211100
2 中国科学院空天信息创新研究院, 北京 100094
3 故宫博物院, 北京 100009
红色系矿物颜料曾被艺术家们大量地使用在古画和古建筑上。 正确地识别出不同种类的红色系颜料对于文物监测与修复具有重要意义。 传统的颜料识别主要依靠化学分析, 不仅识别速度慢、 识别范围小, 而且对文物进行取样操作会造成文物的永久损伤。 高光谱技术对颜料进行无损识别可以很好地解决这些问题。 选用辰砂、 胭脂、 银朱、 朱膘、 朱砂、 赭石、 赭粉、 铁红、 土红、 西洋红10种红色系矿物颜料作为研究对象, 使用地物光谱仪在暗室中获取这10种红色系颜料在350~2 500 nm波段内的高光谱数据原始数字(DN)影像, 经反射率校正, 得到可直接用于光谱分析的反射率数据及光谱曲线。 基于10种红色系颜料不同的光谱曲线特性, 分两步筛选获取被区分颜料即目标颜料的光谱特征波段。 取目标颜料光谱曲线的极值点作为特征波段, 可以筛选得到目标颜料的初选光谱特征波段。 将其余9种颜料在初选光谱特征波段上对应的反射率与目标颜料在此波段上的反射率做差, 对于差值, 筛去离群值后求平方和, 不同波段对应不同的差值平方和, 选取差值平方和较大的前4个波段作为优选后的光谱特征波段。 基于归一化光谱指数模型公式[NDSI=(Ra-Rb)/(Ra+Rb), RaRb分别为目标颜料在光谱特征波段ab处的反射率值]对10种红色系颜料分别构建归一化光谱指数, 将目标颜料与其余9种红色系颜料在同一光谱特征波段处计算得到的光谱指数进行对比分析, 计算目标颜料光谱指数与其余颜料光谱指数的区分度, 以此作为评价区分效果的指标。 对于最终优选出的4个光谱特征波段, 可构建6个归一化光谱指数, 选择最小区分度最大的归一化光谱指数作为目标颜料的光谱特征指数。 研究结果显示, 在通过各自的光谱特征指数进行区分时, 每种目标颜料与其他颜料的最小区分度都保持在0.7以上(大于0.5可认为区分明显), 说明上述方法可以对各红色系颜料进行准确区分, 对于文物颜料的快速准确识别具有实践意义。
高光谱技术 文物 红色系颜料 光谱指数 Hyperspectral technology Cultural relic Red pigments Spectral index 
光谱学与光谱分析
2022, 42(5): 1588
作者单位
摘要
1 石河子大学机械电气工程学院, 新疆 石河子 832000
2 中国农业科学院茶叶研究所, 浙江 杭州 310008
发酵作为影响红茶品质形成的重要流程, 发酵品质程度的判断主要基于人工经验, 难以实现准确客观的评价。 该研究主要针对于工夫红茶发酵工序, 以不同发酵时序下的样品为对象, 利用高光谱检测技术并结合化学计量学方法, 对制备的不同发酵程度的样本进行无损检测和智能判别。 首先利用高光谱成像仪(400~1 000 nm)采集工夫红茶发酵样品的高光谱数据, 并根据气温、 茶叶嫩度、 萎凋情况、 揉捻过程、 发酵叶颜色及香气等现场生产信息, 将6个不同发酵时序下的样本, 根据发酵程度依次划分为3类(轻度发酵、 适度发酵、 过度发酵)。 为了降低采集高光谱信息时因培养皿中发酵叶的不平整而产生的散射现象对光谱数据的影响, 选取标准正态变量变换算法(standard normal variate, SNV)与多元散射校正算法(multiplicative scatter correction, MSC)对全波段光谱进行预处理, 将预处理后的光谱数据进行主成分分析(principal components analysis, PCA), 分别得到前3个主成分的三维载荷图, 根据样本在图中的空间分布特征, 因而选择效果较好的SNV预处理方法。 以全波段光谱最优主成分作为模型输入量, 建立邻近算法(K-nearest neighbor, KNN)、 随机森林(random forests, RF)、 极限学习机(extreme learning machine, ELM)判别模型, 识别率分别为63.89%, 94.44%和86.11%, 结果表明, 非线性模型(RF、 ELM)识别率较高, 其中RF模型性能优于ELM模型。 为比较基于全波段与特征波长建立的工夫红茶发酵品质程度模型判别效果, 采用连续投影算法(successive projections algorithm, SPA)提取31个特征波长进行PCA降维处理, 以特征波长最优主成分作为模型输入量, 构建SPA-KNN, SPA-RF和SPA-ELM判别模型, 识别率分别为83.33%, 91.67%和91.67%。 通过SPA对变量筛选后, SPA-KNN和SPA-ELM模型性能明显提高, SPA-RF模型识别准确度略有下降。 与特征波长建立的模型相比, 全波段建立的RF模型性能最佳, 对工夫红茶轻度发酵、 适度发酵、 过度发酵的判别率分别达到了100%, 83.33%和83.33%。 研究结果为推进红茶智能化、 数字化加工的实现, 提供了理论基础和科学依据。
发酵 红茶 高光谱技术 化学计量学 判别分析 预测性能 Fermentation Black tea Hyperspectral technology Chemometrics Discriminant analysis Predictive performance 
光谱学与光谱分析
2021, 41(4): 1320
作者单位
摘要
1 中国农业大学农学院植物遗传育种与种子科学系, 农业部农作物种子全程技术研究北京创新中心, 北京市作物遗传改良重点实验室, 北京 100193
2 中国农业大学理学院, 北京 100083
种子活力对于农业发展至关重要, 而甜玉米种子普遍存在活力较低且不耐贮藏的问题。 因此, 及时准确地对甜玉米种子活力进行检测尤为重要。 电导率测定法作为一种传统的种子活力检测方法, 存在对种子有一定破坏性、 耗时较长、 重复性不佳等缺点。 针这些问题, 尝试利用可见-近红外(VIS-NIR)高光谱成像系统结合化学计量学算法建立甜玉米种子电导率快速、 无损且精确的检测方法。 以高温高湿老化的绿色超人甜玉米种子为试验材料, 先通过可见-近红外高光谱成像系统采集种子的高光谱图像和进行电导率测定试验, 随后对高光谱图像进行黑白板校正、 提取感兴趣区域, 获取光谱反射率数据。 利用多种预处理方法分别为标准正态变量变换(SNV)、 二阶导(SD)、 一阶导(FD)、 和多元散射校正(MSC)建立甜玉米种子电导率的偏最小二乘回归(PLSR)模型, 比较分析并筛选出最适预处理方法。 再通过连续投影算法(SPA)及遗传算法(GA)对MSC预处理后的高光谱波段进行筛选提取, 基于选出的特征波段建立PLSR模型, 并与全波段(Full)PLSR模型进行对比分析, 得到与甜玉米种子电导率相关性最高的高光谱波段组合, 最终确立一种能够预测甜玉米种子电导率的方法体系。 实验结果显示: 不同预处理方法(SNV, FD, SD和MSC)建立的PLSR模型性能有所差异, 其中MSC-PLSR模型的表现最优秀, 其校正决定系数和预测决定系数分别为0.983和0.974, 相应的校正均方根误差和预测均方根误差分别为0.165和0.226。 进一步分析MSC-Full-PLSR, MSC-SPA-PLSR和MSC-GA-PLSR模型, 发现GA能够将全光谱的853个波段压缩至25个有效波段, 所建立的MSC-GA-PLSR模型仍表现优秀, 其校正决定系数和预测决定系数分别为0.976和0.973, 相应的校正均方根误差和预测均方根误差分别为0.194和0.212。 实验结果表明: 基于可见-近红外(VIS-NIR)高光谱成像系统结合化学计量学算法实现对甜玉米种子电导率的预测存在一定的可行性。 该研究为甜玉米种子电导率的快速、 无损且精确的检测提供一定的理论支持。
高光谱技术 电导率 甜玉米种子 特征波段 偏最小二乘回归 Hyperspectral technology Sweet corn seed Vigor Characteristic wavelength Partial least squares regression(PLSR) 
光谱学与光谱分析
2019, 39(8): 2608
作者单位
摘要
1 中国农业大学农学院植物遗传育种与种子科学系, 农业部农作物种子全程技术研究北京创新中心, 北京市作物遗传改良重点实验室, 北京 100093
2 中国农业大学理学院, 北京 100083
种子活力是种子质量的一项重要指标, 高活力的种子具有较强的抗逆性、 生长优势及生产潜力。 而种子活力在种子生理成熟时最高, 随后随着贮藏时间的延长而发生着自然不可逆的降低。 因此, 在播种前及时、 准确地对种子活力进行检测和筛选具有重要的实践意义。 针对传统种子活力检测方法存在的操作过程复杂繁琐、 耗时长、 重复性差且对种子有破坏性等缺点, 研究尝试利用高光谱成像技术建立单粒小麦种子生活力快速、 无损、 精确的检测方法。 以高温高湿老化后的190粒小麦种子(发芽128粒, 不发芽62粒)作为研究样本, 先利用可见-近红外(Vis-NIR)高光谱成像系统采集样本种子的光谱图像和进行标准发芽试验, 并确保光谱采集试验和标准发芽试验的小麦种子一一对应。 随后提取种子光谱图像的感兴趣区域并对其光谱数据进行平均和特征分析。 分别采用一阶导数(FD)、 均值中心化(MC)、 正交信号校正(OSC)和多元散射校正(MSC)对原始光谱数据进行预处理, 结合偏最小二乘辨别分析(PLS-DA)建立全波段PLS-DA模型, 比较分析, 并筛选出最适预处理方法。 分别利用无信息变量消除算法(UVE)、 竞争性自适应重加权算法(CARS)、 连续投影算法(SPA)及耦合不同变量筛选方法对特征波段进行筛选提取, 再分别基于所提取出的特征波段建立PLS-DA定性判别模型, 对比分析, 最终确立提取与单粒小麦种子生活力相关性最高的高光谱特征波段方法体系。 结果表明: 不同光谱预处理建立的模型其表现有所差异, 在MC, FD, OSC和MSC中, 采用MC对原始高光谱数据进行预处理, 建立的全波段MC-PLS-DA判别模型, 其校正集和预测集对小麦种子生活力的整体鉴别正确率分别为82.5%和83.0%, 优于原始及其他预处理后建立的全波段PLS-DA判别模型, 其校正集和预测集对小麦种子活种子鉴别正确率分别为94.8%和90.6%。 进一步对比3种单特征波段提取方法及其耦合分析建模中, 发现3种变量筛选方法耦合(UVE-CARS-SPA)的方式能够将光谱全波段的688个变量压缩至8个变量(473, 492, 811, 829, 875, 880, 947和969 nm), 利用所筛选出的8个变量建立的MC-UVE-CARS-SPA-PLS-DA模型获得了最优秀的鉴别效果, 其校正集和预测集对小麦种子生活力的整体鉴别正确率分别为86.7%和85.1%, 较全波段模型(MC-Full-PLS-DA)分别提升了4.2%和2.1%, 活种子的鉴别正确率分别为93.8%和84.4%, 经过此优秀模型筛选后, 种子批最终发芽率可达到93.1%。 实验结果表明, 基于高光谱成像技术结合UVE-CARS-SPA-PLS-DA模型能够实现对单粒小麦种子生活力的定性判别。 研究工作为小麦种子活力的快速、 精确且无损的检测提供理论支持。
高光谱技术 小麦种子 生活力 检测 特征波段 Hyperspectral technology Wheat seed Viability Detection Characteristic wavelength 
光谱学与光谱分析
2019, 39(5): 1556
李翠玲 1,2,*姜凯 1,2马伟 1,2王秀 1,2[ ... ]宋健 1,2
作者单位
摘要
1 北京农业智能装备技术研究中心, 北京 100097
2 国家农业智能装备工程技术研究中心, 北京 100097
番茄植株在生长过程中受病虫害的侵染, 将导致番茄减产和种植户的经济效益降低, 该研究用高光谱技术结合化学计量学方法, 实现了番茄叶片斑潜蝇虫害的快速识别。 搭建了简易的高光谱成像系统, 包括光源单元、 高光谱图像采集单元和数据处理单元, 用该系统获取番茄叶片的高光谱图像, 对高光谱图像进行校准, 并从每一幅图像中提取光谱信息。 分别采用了光谱角匹配(SAM)分析方法和光谱红边参数判别分析(DA)方法识别番茄叶片斑潜蝇虫害。 在SAM分析中, 对高光谱数据进行了归一化预处理, 以消除多余信息, 增加样品之间的差异。 比较了以不同番茄叶片样品的反射光谱作为测试光谱时, 虫害识别效果的差异, 当以受到斑潜蝇侵染的番茄叶片的平均反射光谱作为测试光谱时, 虫害识别的正确率较高, 达到96.5%。 在光谱红边参数判别分析中, 从光谱数据中提取了红边位置、 红边振幅、 最小振幅、 红边面积、 红谷位置和红边振幅/最小振幅6组红边信息, 利用判别分析方法建立番茄叶片斑潜蝇虫害的判别模型, 比较了距离判别、 Fisher判别、 Bayes判别分析方法的判别效果, 使用距离判别分析建模的判别正确率最低, 判别正确率为88.0%, 使用Fisher判别分析建模的效果最佳, 判别正确率为96.0%。 研究结果表明, 采用高光谱技术识别番茄叶片斑潜蝇虫害具有可行性。
高光谱技术 番茄 虫害 红边参数 Hyperspectral technology Tomato Pest SAM SAM Red edge parameter DA DA 
光谱学与光谱分析
2018, 38(1): 253

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!