Author Affiliations
Abstract
1 Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
2 Xiamen Center for Disease Control and Prevention, Xiamen 361021, China
3 Xiamen Intelligent Health Research Institute, Xiamen 361009, China
4 School of Life Sciences, Xiamen University, Xiamen 361005, China
Deep-ultraviolet (DUV) disinfection technology provides an expeditious and efficient way to suppress the transmission of coronavirus disease 2019 (COVID-19). However, the influences of viral variants (Delta and Omicron) and low temperatures on the DUV virucidal efficacy are still unknown. Here, we developed a reliable and uniform planar light source comprised of 275-nm light-emitting diodes (LEDs) to investigate the effects of these two unknown factors and delineated the principle behind different disinfection performances. We found the lethal effect of DUV at the same radiation dose was reduced by the cryogenic environment, and a negative-U large-relaxation model was used to explain the difference in view of the photoelectronic nature. The chances were higher in the cryogenic environment for the capture of excited electrons within active genetic molecules back to the initial photo-ionised positions. Additionally, the variant of Omicron required a significantly higher DUV dose to achieve the same virucidal efficacy, and this was thanks to the genetic and proteinic characteristics of the Omicron. The findings in this study are important for human society using DUV disinfection in cold conditions (e.g., the food cold chain logistics and the open air in winter), and the relevant DUV disinfection suggestion against COVID-19 is provided.
LED UV-C III-nitrides semiconductors photoelectronic COVID-19 virucidal efficacy 
Opto-Electronic Advances
2023, 6(9): 220201
作者单位
摘要
1 Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing00083, China
2 School of Electrical and Computer Engineering,University of Oklahoma,Norman 73019,USA
3 Center of Materials Science and Optoelectronics Engineering,University of the Chinese Academy of Sciences,Beijing 100049,China
4 Homer L. Dodge Department of Physics and Astronomy,University of Oklahoma,Norman 73019,USA
通过对两种结构参数与设计偏差较大的带间级联激光器(ICL)的研究,探讨了器件性能在结构变化下的耐受性。在300 K时,即使和4.6 μm的设计波长相比蓝移700 nm以上,激光器仍然性能良好,其阈值电流密度低至320 A/cm2。此研究为带间级联激光器在结构变化方面的耐受性提供了坚实的实验依据。
III-V族半导体 带间级联激光器 中红外 量子阱 II类异质结 III-V semiconductors interband cascade lasers mid-infrared quantum wells type-II heterostructures 
红外与毫米波学报
2020, 39(2): 137
作者单位
摘要
中山大学电子与信息工程学院, 广东 广州 510275
这些年光子集成技术发展迅速, 引起广泛讨论, 被认为将会重现电子集成摩尔定律的飞速发展。光子集成是光电子器件增强功能、提高性能、减小尺寸、降低功耗、降低成本的根本技术方向。由于有源功能与无源功能之间在材料层面的不兼容性, 光子集成面临的主要技术挑战是实现无源和有源功能在同一芯片上的高质量、可扩展集成。讨论了光子集成的可扩展性的根本限制因素, 并针对不同应用, 讨论集成材料平台选择、无源与有源光子材料集成、器件加工、集成工艺、测试等关键步骤的一些关键技术问题。
光子集成 磷化铟光子器件 硅基光子学 混合集成 三五族半导体 photonic integration indium phosphide photonic devices silicon photonics hybrid integration III-V semiconductors 
光学与光电技术
2019, 17(2): 6
作者单位
摘要
昆明物理研究所,云南昆明 650223
III-V族半导体在第三代红外探测器中扮演了重要的角色,近年来越来越受到人们的瞩目,特别是 InAs/GaSb二类超晶格已经成为除碲镉汞外最受关注的红外探测器材料。本文简要回顾了以色列 SCD公司在 III-V族红外探测器的研究历程。重点总结了 SCD关于 InAsSb nBn中波高温探测器和 InAs/GaSb二类超晶格 pBp长波探测器中的研发。
SCD公司 III-V红外探测器 二类超晶格 InAsSb中波高温探测器 pBp长波探测器 SCD III-V semiconductors infrared detector type II superlattice InAsSb nBn MWIR HOT detector pBp LWIR detector 
红外技术
2018, 40(10): 936

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!