作者单位
摘要
中国航空制造技术研究院高能束流加工技术重点实验室, 北京 100024
针对目前带热障涂层(TBC)叶片的难加工问题, 开展了皮秒激光加工热障涂层的试验。试验分别在三种扫描速度下(50 mm/s, 150 mm/s, 250 mm/s)使用不同单脉冲能量加工热障涂层。发现随着扫描速度的增大, 材料出现缺陷对应的最小单脉冲能量分别为120 μs, 280 μs和400 μs; 随着脉冲能量的增大, 热障涂层出现裂纹、崩边及脱落等缺陷越多。通过面积外延法, 计算三种扫描速度下多脉冲烧蚀阈值分别为1.17 J/cm2、2.72 J/cm2和4.45 J/cm2, 随着激光扫描速度的提高, 烧蚀阈值也随之增大。小脉冲能量去除热障涂层主要以雪崩电离为主, 当以较大脉冲能量去除时主要以多光子吸收为主, 当脉冲能量远大于烧蚀阈值时会在加工区域产生烧蚀潜热, 在材料加工区域边缘处因产生应力集中出现微裂纹、崩块和整块脱落的缺陷。
热障涂层 皮秒激光 脉冲能量 扫描速度 烧蚀阈值 thermal barrier coatings picosecond laser laser pulse energy scanningspeed ablation threshold 
应用激光
2020, 40(1): 79
左兆陆 1,2,3,*赵南京 1,3孟德硕 1,3黄尧 1,2,3[ ... ]刘建国 1,3
作者单位
摘要
1 中国科学院环境光学与技术重点实验室, 中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
石油的勘探开发遍布我国各地区, 其产品的应用与工农业生产和人民日常生活密不可分。 石油及石油制品在使用过程中泄漏到土壤中不断累积, 会破坏生态环境。 激光诱导荧光(LIF)是检测土壤中石油烃类有机污染物的重要方法。 激光脉冲能量是LIF的重要实验参数, 对检测灵敏度, 稳定性有显著影响。 为探究土壤中石油烃的激光诱导荧光信号随激发光脉冲能量变化的特性, 以机油为例, 在实验室制备了机油浓度为0.5%~6%的土壤样品, 使用Nd∶YAG激光器作为激发光源, 通过改变266 nm激光的脉冲能量, 获取不同能量密度下油污土壤的荧光光谱。 实验结果表明, 土壤和土壤中机油的荧光光谱强度随激光脉冲能量的增加而增加, 但增加到一定程度后增幅明显减小。 原因是虽然激光能量密度逐渐增强荧光强度也在增强, 土壤中单位面积的有机物含量有限, 部分有机质已经被光解, 有机物被激发的荧光趋于饱和。 在适当的能量密度下, 土壤中机油的荧光强度与其浓度有良好线性关系。 实验发现, 随着激光能量密度的减小, LIF系统测量机油的平均相对误差先减小后增大, 其原因是, 当激光能量密度小于一定范围时, 信号的信噪比随之减小, 因此测量的平均相对误差逐渐增大; 当激光能量密度大于一定范围时, 虽然信号的信噪比随之增大, 但已经逐渐超出系统最佳的测量范围, 所以测量的平均相对误差逐渐增大。 当激光能量密度在2.4~4.0 mJ·cm-2时, 土壤中机油的荧光强度随激光脉冲能量密度线性增强, 且对机油浓度的测量误差均小于2.5%, 检测限在200~300 mg·kg-1之间。 当能量密度大于4.0 mJ·cm-2时, 机油的荧光强度增幅显著降低, 测量误差也随之增大。 因此, 兼顾LIF测量土壤中机油的平均相对误差和测量检测限, 激光脉冲能量选择2.4~4.0 mJ·cm-2较优。 所述方法也可扩展其他土壤中石油烃荧光信号检测。
土壤 机油 激光诱导荧光 激光脉冲能量 光谱 石油烃 Soil Machine oil Laser-induced fluorescence Laser pulse energy Spectrum Petroleum hydrocarbon 
光谱学与光谱分析
2020, 40(3): 929
Jiajun Wu 1,2,3Jibin Zhao 1,2,*Hongchao Qiao 1,2Xuejun Liu 1,4[ ... ]Taiyou Hu 1,2,3
Author Affiliations
Abstract
1 Manufacturing Technology Department, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
2 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4 School of Computer, Hunan University of Technology, Zhuzhou 412007, China
In order to overcome the existing disadvantages of offline laser shock peening detection methods, an online detection method based on acoustic wave signals energy is provided. During the laser shock peening, an acoustic emission sensor at a defined position is used to collect the acoustic wave signals that propagate in the air. The acoustic wave signal is sampled, stored, digitally filtered and analyzed by the online laser shock peening detection system. Then the system gets the acoustic wave signal energy to measure the quality of the laser shock peening by establishing the correspondence between the acoustic wave signal energy and the laser pulse energy. The surface residual stresses of the samples are measured by X-ray stress analysis instrument to verify the reliability. The results show that both the surface residual stress and acoustic wave signal energy are increased with the laser pulse energy, and their growth trends are consistent. Finally, the empirical formula between the surface residual stress and the acoustic wave signal energy is established by the cubic equation fitting, which will provide a theoretical basis for the real-time online detection of laser shock peening.
laser shock peening acoustic wave laser pulse energy surface residual stress acoustic wave signal energy online detection 
Opto-Electronic Advances
2018, 1(9): 180016
作者单位
摘要
重庆邮电大学 光电工程学院 重庆高校光纤通信技术重点实验室, 重庆 400065
为研究激光脉冲能量对激光诱导等离子体辐射特性和膨胀过程的影响, 采用ICCD相机对不同激光脉冲能量激发的铝合金等离子体进行快速成像, 并利用Boltzmann斜线法和Stark展宽法分析等离子体的电子温度和电子数密度随激光脉冲能量的演化规律.实验结果表明, 激光诱导等离子体呈现明显的分层结构, 等离子体的激发阈值约为3 mJ, 等离子体不同区域的面积随激光脉冲能量变化呈现不同的特征.当激光脉冲能量低于10 mJ时, 等离子体的分层结构不显著.激光脉冲能量从10 mJ增加到100 mJ过程中, 等离子体电子温度从4 980 K升高到7 221 K, 等离子体的电子数密度在1017 cm-3量级并随激光能量增加而增大且趋于饱和.
激光诱导击穿光谱 快速成像 激光脉冲能量 电子温度 电子数密度 Laser-induced breakdown spectroscopy Fast imaging Laser pulse energy Electron temperature Electron number density 
光子学报
2014, 43(9): 0914003
作者单位
摘要
北京航空制造工程研究所高能束流国防科技重点实验室, 北京 100024
介绍了制孔用百纳秒级脉宽Nd∶YAG激光器的研制, 具体分析了激光器的设计方案、激光光路布置及其主要特点, 并对激光器技术指标进行了测试, 主要技术参数为激光能量≥5.6 J, 频率10 Hz, 脉宽200~500 ns, 脉冲列宽0.3~2.0 ms, 达到了预期的设计效果。
Nd∶YAG激光器 百纳秒脉宽 激光脉冲能量 激光制孔 Nd∶YAG laser hundred-nanosecond pulse laser pulse energy laser drilling 
应用激光
2012, 32(5): 416
作者单位
摘要
中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
热效应是限制高能激光输出性能的重要因素之一,液体激光体系在此方面具有特殊的优势。开展了二极管抽运无机液体激光器的流动出光实验,实现了流动状态下较长时间高重复频率的激光脉冲输出。测量了激光光谱、激光脉冲波形和单脉冲激光能量等参数,其中激光中心波长为1052.7 nm,脉宽约为170 μs,最大单脉冲能量约为5 mJ。在抽运频率400 Hz时可连续工作10 min以上。但随着抽运频率上升,激光脉冲能量相应下降。结果表明,二极管抽运的无机液体激光体系在流动状态下能有效地避免热沉积,从而实现较长时间、高重复频率的激光脉冲输出,有望发展成为新型高功率、高光束质量激光体系,值得开展深入的实验研究。
液体激光器 流动出光 激光脉冲 单脉冲能量 
光学学报
2010, 30(9): 2620
作者单位
摘要
中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
对激光二极管(LD)抽运无机液体体系在流动状态下进行了激光实验研究, 初步实现了流动状态下较长时间和较高重复频率的激光脉冲输出, 最大单脉冲能量为5 mJ, 最高抽运频率为400 Hz。根据实验参数数值计算了激光脉冲能量, 初步分析了抽运频率、流场特性和环境湿度对激光输出性能的影响, 为进一步开展无机液体流动激光实验积累了经验。实验结果表明, LD抽运的无机液体体系在流动时能有效地避免热沉积, 可以获得较长时间和较高频率的激光脉冲输出, 而流场特性和环境湿度对激光输出具有十分重要的影响, 需要优化设计流道和控制环境湿度。
激光器 液体激光 流动出光 激光脉冲 单脉冲能量 
中国激光
2010, 37(S1): 57
作者单位
摘要
武汉海军工程大学 电子工程学院 光电研究所,武汉 430033
建立了激光致声的产生和测量系统,对蒸馏水、酒精和甘油中的激光致声进行测量分析,分别计算了这3种透明液体在体积模量(0.2~7.0 GPa)、动力粘性系数(0.001~30.000 Pa·s)和所吸收激光脉冲能量(10~400 mJ)变化时对应的激光致声的相关数值。实验和数值计算结果表明:激光致声的主频、峰值声压和声能随着透明液体体积模量的增加而增加;激光致声的峰值声压和声能随着动力粘性系数的增加而减小,随着击穿区所吸收的激光脉冲能量的增加而增加;动力粘性系数和击穿区所吸收的激光脉冲能量对主频的影响不明显。
激光致声 透明液体 体积模量 动力粘性系数 吸收能量 laser induced sound transparent liquid bulk modulus dynamic-viscosity coefficient absorbed laser pulse energy 
强激光与粒子束
2009, 21(7): 998
作者单位
摘要
中国科学院电子学研究所, 北京 100080
实验通过采用最大输出脉冲能量为100 J的TEA CO2激光器,研究了从13~80 J的激光脉冲能量对大气呼吸模式激光推进冲量耦合系数的影响。结果表明当脉冲能量在80~24 J变化时,冲量耦合系数没有明显变化,当脉冲能量下降至22 J以下时,冲量耦合系数下降52%。对这一特性进行了初步的理论分析,并通过改变实验环境气体压强,对这一理论进行了验证。
激光技术 激光推进 激光脉冲能量 冲量耦合系数 
中国激光
2006, 33(12): 1684
作者单位
摘要
西南技术物理研究所, 成都 610015
本文报道用面阵CCD测量脉冲YAG:Nd~(3+)激光束能量空间分布状态。介绍了CCD相机与图像处理仪、微机相结合实现自动化测试的结果。
激光脉冲能量分布测量 面阵CCD 图像处理仪 
中国激光
1992, 19(1): 43

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!