作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
3 中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230026
4 生态环境部卫星环境应用中心, 北京 100094
利用中国科学技术大学开发的 GF-5/EMI 对流层 NO2 柱总量产品, 结合排放清单和地面降水、气温数据, 研究了 2019 年 1-8 月华北平原对流层 NO2 的时空变化趋势。结果表明, NO2 污染集中在河南省、河北省和天津市, 河南省焦作市 (1.670×1016 molecules·cm-2) 和河北省石家庄市 (1.426×1016 molecules·cm-2) 尤为严重; 周变化总体呈现“ 反周末效应”, 但部分农业城市趋势相反; 月变化从 1 月 (1.635×1016 molecules·cm-2) 起持续下降, 8 月降至最低水平 (1.839×1015 molecules·cm-2), 与月降水、月气温的相关系数分别为 -0.8622 (p = 0.0059 < 0.01) 和 -0.9162 (p = 0.0014 < 0.01), 与人为生活源月排放的相关系数为 0.9778 (p = 2.69×10-5< 0.01); 以天津市为代表的华北平原工业城市污染严重, 在未来大气污染治理中需继续关注。
对流层 高分五号 华北平原 NO2 污染 troposphere GF-5 the North China Plain NO2 pollution 
大气与环境光学学报
2021, 16(3): 186
作者单位
摘要
为探讨天山北坡河谷绿洲城市车流量与对流层NO2垂直柱浓度(VCD)的关系, 基于各城市车流量状况, 利用地基多轴差分光谱仪(Mini MAX-DOAS)在2018年—2019年天山北坡经济带上的综合性大城市乌鲁木齐、 工业型中等城市石河子和工业型小城市阜康市中心区连续固定监测, 并沿城市交通主干道进行车载移动监测, 研究车流量对NO2VCD的影响, 对比分析山盆体系河谷绿洲城市与中东部发达城市污染严重原因的差异。 结果表明: (1)天山北坡大中小城市的车流量日均值大城市乌鲁木齐(1 406辆/5 min)远大于中小城市, 中等城市石河子(203辆/5 min)和小城市阜康(185辆/5 min)差异并不显著(p>0.05), 而各类城市NO2VCD整体差异显著(p<0.05), 其日变化峰值有所差异, 表现为乌鲁木齐(22.613×1015 molec·cm-2)>阜康(17.758×1015 molec·cm-2)>石河子(15.272×1015 molec·cm-2), 三类城市的车流量和NO2VCD的日变化趋势一致, 都呈现出“早晚高, 中午低”的变化趋势; 季节变化中三类城市的车流量和NO2VCD均为: 冬春季>秋夏季; (2)虽然早晚各监测点的车流量有所差异, 但三类城市的车流都集中在市中心附近; 移动监测数据表明, NO2VCD高值出现在车流较高的市区, 并且在各城市风向稳定时, 下风向浓度大于上风向; 由于居住空间差异, 人们在城市各功能区间的活动, 车辆流向和NO2VCD都集中于人流密集的商业区, 说明车辆对NO2VCD具有较大贡献; (3)2009年—2019年10年间天山北坡大中小城市经济生产总值增长率在200%以上, 乌鲁木齐、 石河子机动车增长率超过北京、 上海等发达城市, 城市快速发展, 并处于河谷绿洲地带, 地势南高北低, 冬季逆温层深厚, 静风天数较多, 采暖期长达6个月, 造成冬季污染严重。 天山北坡城市除人为污染排放外, 自然因素对污染物形成聚集作用。
天山北坡 车流量 对流层NO2垂直柱浓度 地基多轴差分光谱仪 The north slope of Tianshan Mountain Traffic flow Troposphere NO2 vertical column density Ground-based MAX-DOAS(Multi-axis differential optical absorption spectroscopy) 
光谱学与光谱分析
2021, 41(2): 345
洪光烈 1,*李嘉唐 1,2王建宇 1,2李虎 1,2[ ... ]孔伟 1
作者单位
摘要
1 中国科学院上海技术物理研究所 中国科学院空间主动光电技术科技创新重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
3 中国科学院大气物理研究所 中层大气和全球环境探测重点实验室, 北京 100029
为了更好地探测对流层大气水汽的垂直廓线, 对已经建立的935 nm差分吸收激光雷达进行了部分改进。采取双通道接收的措施, 近场通道望远镜同时也是发射激光的扩束器, 近场通道采用偏振分束器加四分之一波片的方式隔离发射光和回波光, 远场通道(主通道)采用平行旁轴的卡塞格林望远镜, 从而减小激光雷达近地面盲区; 发射机的双波长挪到936.0~936.5 nm之间, 增加了注入种子激光的功率, 提高发射光谱纯度, 从而提高探测精度。探测范围从600~2 000 m, 延展到250~3 000 m, 随机误差5%。
差分吸收激光雷达 大气对流层水汽 后向散射 垂直范围 differential absorption lidar(DIAL) vapor of troposphere backscattering vertical range 
红外与激光工程
2019, 48(12): 1203009
作者单位
摘要
淮北师范大学物理与电子信息学院, 安徽 淮北 235000
针对被动多轴差分吸收光谱技术(MAX-DOAS)反演痕量气体SO2中吸收强度弱以及易受反演波段和大气气溶胶状态影响的问题,研究了基于地基MAX-DOAS的对流层SO2垂直廓线及垂直柱浓度的反演方法。通过反演误差对比确定了SO2的最佳反演波段(307~330 nm),并精确获取了差分斜柱浓度。鉴于大气中气溶胶状态是影响SO2等痕量气体反演的重要因素,反演中采用两步反演方法:第一步通过测量O4气体的差分斜柱浓度来反演气溶胶廓线;第二步将气溶胶廓线输入到辐射传输模型中,利用痕量气体浓度垂直反演算法获取对流层(0~4 km)中SO2的垂直分布廓线和垂直柱浓度。将SO2廓线在0~100 m的反演结果和地面点式仪器数据进行对比,结果发现两者的一致性较高。研究表明,基于MAX-DOAS反演对流层中SO2的垂直分布及垂直柱浓度是一种有效的手段。
大气光学 对流层SO2垂直廓线 被动多轴差分吸收光谱技术 气溶胶 
光学学报
2019, 39(8): 0801001
尚震 1,2,*谢晨波 1钟志庆 1王邦新 1[ ... ]王英俭 1,2
作者单位
摘要
1 中国科学院安徽光学精密机械所 大气成分与光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230031
水汽在大气中含量很少, 但变化很大, 变化范围在0.1%~4%之间, 水汽绝大部分集中在对流层。随着光电探测技术的不断发展, 大气衰减对光电探测造成的影响也越来越显著, 其中水汽是主要影响因子之一, 也是最为不确定参数。光电探测中常用红外波段, 但是水汽分子浓度较大, 对辐射吸收造成很大的影响。拉曼激光雷达是测量大气水汽的主要技术手段之一。介绍了自行研制的水汽测量拉曼激光雷达的总体结构和主要技术参量。测量结果显示: 该激光雷达可以对夜晚8 km高度范围内以及白天边界层内的水汽进行测量。实验数据与当地探空数据进行比对, 取得了较好的一致性, 充分验证了该拉曼激光雷达测量水汽的有效性和可靠性。
水汽混合比 对流层光电探测 拉曼激光雷达 垂直对流层 water vapor mixing ratio photoelectric detection Raman lidar troposphere 
红外与激光工程
2016, 45(12): 1211003
作者单位
摘要
1 中国科学院安徽光学精密机械研究所中国科学院大气成分与光学重点实验室, 安徽 合肥 230031
2 中国科学院大学, 北京 100049
利用拉曼激光雷达系统测量了合肥西郊低对流层(2 km以下)大气二氧化碳浓度的垂直分布,并对获得的数据进行系统定标和滑动平均处理,反演出大气二氧化碳的垂直浓度廓线。对2014年7月到2015年12月激光雷达观测数据进行反演和统计分析,初步得到了合肥地区低对流层大气二氧化碳垂直浓度廓线的变化规律。结果表明:1) 低对流层大气二氧化碳浓度垂直分布随高度增加而减小,在近地面150 m以下浓度较高,变化较剧烈,300 m以上大气二氧化碳的浓度廓线趋于平稳;2) 低对流层大气二氧化碳垂直浓度廓线呈明显的季节性分布特征,夏季廓线的整体浓度最小,冬季廓线的整体浓度最大;3) 低对流层大气二氧化碳垂直分布与月份有一定的相关性,整体廓线约以每年2×10-6增长。通过实验发现,二氧化碳垂直浓度随着高度增加非单调递减,在大约300~700 m高度区间存在二氧化碳富集区,随着天空渐渐变亮,此区间大气二氧化碳浓度有减小的趋势。
大气光学 拉曼激光雷达 二氧化碳垂直廓线 低对流层 统计分析 
光学学报
2016, 36(11): 1101001
作者单位
摘要
空军工程大学防空反导学院, 西安 710051
提出了一种基于对流层散射双向时间比对的双基地雷达时间同步的新方法(TWT3S), 利用对流层散射通信设备进行雷达站间双向时间比对以求取雷达站间精确的时间差。详细推导了TWT3S的计算模型, 对时间间隔测量误差、发射与接收设备时延误差、对流层时延误差、几何距离时延误差进行了讨论, 并给出了TWT3S的理论精度。计算结果表明, 对流层时延误差是最主要的误差来源, 占所有误差的90%以上。TWT3S模型的理论精度为15~21 ns, 比采用微波或光纤直接同步法精度高, 为双基地雷达时间同步提供了新的思路。
双基地雷达 双向时间比对 对流层散射通信 误差分析 bistatic radar two-way time transfer troposphere scattering communication error analysis 
电光与控制
2014, 21(4): 10
作者单位
摘要
中国科学院 安徽光学精密机械研究所, 中国科学院 大气成分与光学重点实验室, 合肥230031
利用紫外差分吸收(DIAL)激光雷达对北京南郊对流层低层臭氧垂直分布进行了测量, 将探测结果与探空气球同时测量的结果进行了对比, 取得了较为一致的分布趋势。选择北京南郊地区晴好天气探测的结果进行了统计分析, 结果表明:近地面层内随高度增加, 臭氧体积混合比逐渐减小; 距地面0.5~1.5 km内平均臭氧体积混合比具有明显的日变化趋势, 最大值出现在午后14点左右, 相对太阳辐射最强时刻具有明显的滞后性; 日平均最大体积混合比低于4×10-8, 体积混合比起伏小于±3.2×10-9。
大气臭氧 紫外差分吸收激光雷达 低对流层 日变化 柱含量 atmospheric ozone ultraviolet differential absorption lidar low troposphere diurnal variation column concentration 
强激光与粒子束
2013, 25(3): 553
作者单位
摘要
1 中国科学技术大学地球与空间科学学院极地环境研究室, 安徽 合肥 230026
2 中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
多轴差分吸收光谱技术(MAX-DOAS)作为一种观测痕量气体成分的地基遥感手段, 在反演过程中利用天顶谱扣除了平流层的影响, 因而对底层大气的测定较为敏锐。 采用地基被动MAX-DOAS在2011年7月5日—8月1日对北极新奥尔松地区的NO2柱浓度进行观测。 观测期间4个离轴观测角的NO2差分斜柱浓度(DSCDs)结果显示, NO2主要集中在对流层底部。 观测期间新奥尔松地区NO2的平均混合比为1.023E11 molec·cm-3(0~1 km), 其含量的波动与轮船的化石燃料燃烧和大气光化学反应有关。 3 km内NO2的垂直分布图显示, NO2主要来自海洋边界层的释放, 且随时间呈现波动变化。
对流层 北极新奥尔松 垂直分布 NO2 NO2 Troposphere MAX-DOAS MAX-DOAS Ny-lesund Vertical distribution 
光谱学与光谱分析
2012, 32(9): 2336
作者单位
摘要
1 中国科学院安徽光学精密机械研究所,中国科学院大气成分与光学重点实验室, 安徽 合肥 230031
2 中国科学院研究生院, 北京 100049
介绍了中国科学院安徽光学精密机械研究所研制成功的我国第一台测量低对流层大气CO2时空分布的拉曼激光雷达系统,选用波长355 nm的紫外激光作为光源,利用光子计数卡双通道采集大气中N2和CO2的拉曼后向散射信号。详细分析了拉曼激光雷达系统的定标方法,提出采用Li7500型H2O/CO2分析仪与拉曼激光雷达系统进行对比与标定,结果显示激光雷达与CO2分析仪数据变化趋势一致性较好,激光雷达具有很高的探测灵敏度与准确性,通过线性拟合水平方向标定误差小于0.2%,垂直方向小于1.4%。由标定关系反演出大气中CO2的时空分布,给出了合肥西郊低对流层大气CO2水平方向0~2.0 km与垂直方向0~2.5 km分布的典型测量结果。
大气光学 拉曼激光雷达 CO2分布廓线 系统标定 低对流层 
光学学报
2012, 32(8): 0801003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!