作者单位
摘要
1 东北林业大学计算机与控制工程学院, 黑龙江 哈尔滨 150040
2 哈尔滨工业大学仪器科学与工程学院, 黑龙江 哈尔滨 150001
大米是我国最重要的谷类作物。 如何准确的实现地理标志性大米的品种鉴别和外观品质评价, 不仅关乎消费者切身利益, 而且关乎零售商和生产商信誉, 是一项广泛关注的问题。 首先, 为实现集成化的精米品种识别和外观品质检测应用, 建立一种精米品种分类与外观品质多参数检测系统。 该系统采用近红外光谱仪搭配漫反射附件采集米粉光谱信息, 可以实现基于近红外光谱法的精米品种分类; 采用互补金属氧化物半导体(CMOS)显微相机配合机电控制系统采集米粒图像, 基于图像法实现精米外观品质多参数检测, 检测对象包括裂纹、 长宽、 垩白、 碎粒和黄粒。 以上述系统为基础, 为提高精米品种分类精度, 提出一种基于光谱-图像特征模型融合的精米品种分类方法。 以近红外光谱特征与多图像特征作为输入参数, 以精米品种编号作为输出参数, 基于偏最小二乘方法(PLS)建立品种分类融合模型。 在不同融合方案的建模过程中, 每种融合方案都采用变量投影重要性分析方法(VIP)实现融合模型输入参数的最优筛选, 然后通过不同融合方案分类精度对比确定最优融合模型。 最后, 开展精米外观品质多参数检测和不同精米品种分类方法性能对比实验。 结果表明, 建立的精米品种分类与外观品质多参数检测系统可以实现包括裂纹米率、 粒型、 垩白米率、 碎米率和黄粒米率的精米外观品质多参数检测, 检测精度范围为89.2%~97.0%; 提出的基于光谱-图像特征模型融合的精米品种分类方法相比于传统方法可以提高精米品种分类精度, 相比于传统方法中效果较好的近红外光谱法, 面向五常、 响水、 银水、 越光四种大米的分类精度可提高2.5%~7.5%。
精米 外观品质检测 品种分类 特征融合 Milled rice Appearance inspection Variety classification Feature fusion 
光谱学与光谱分析
2023, 43(9): 2837
作者单位
摘要
1 江苏省作物遗传生理重点实验室/江苏省作物栽培生理重点实验室, 江苏 扬州 225009江苏省粮食作物现代产业技术协同创新中心/扬州大学农学院, 江苏 扬州 225009
2 中国科学院空天信息创新研究院, 北京 100094
随着长江中下游稻麦轮作区水稻成熟期的推迟, 冬小麦播期的推迟已经成为影响产量的主要障碍, 因此在迟播小麦中筛选抗性较好的品种很有必要。 该研究旨在监测冬小麦生长早期冠层叶片的相对叶绿素含量, 用于迟播冬小麦品种筛选。 为探讨利用无人机多光谱影像监测冬小麦叶绿素含量的可行性, 基于多光谱无人机获取的5个单波段光谱反射率和15个植被指数作为自变量, 经过递归特征消除法(RFE)特征变量筛选, 去除冗余变量, 利用后向神经网络(BP)回归算法构建冬小麦相对叶绿素含量(SPAD)值遥感反演模型。 根据2020年—2021年江苏省扬州市广陵区实验点冬小麦越冬期、 拔节期两个生育期的实测叶片SPAD值, 结合同步获取的多光谱无人机影像, 分析了这两个生育期遥感变量和SPAD值之间的相关性。 并结合遥感变量之间的特征重要性排序进行特征变量筛选, 筛选出的变量作为模型的输入, 构建并筛选出各生育期最佳的反演模型。 比较岭回归(Ridge)和梯度提升树(GBD)算法, 以R2和RMSE作为模型评价指标, 在验证集上分析了各生育期3种模型的自学习能力和泛化能力。 结果表明, 经过了最优光谱信息筛选而建立的BP神经网络模型在此两个生育期的数据集上均表现出了最强的回归预测能力。 R2和RMSE在越冬期分别为0.806和1.861, 拔节期分别为0.827和0.507。 通过对无人机多光谱数据进行变量筛选, 构建的优选模型BP神经网络具有较高估算精度, 且表明在冬小麦的早期监测中, 拔节期比越冬期效果好。 利用无人机多光谱在估算迟播冬小麦SPAD值进行品种抗性筛选的方法是有价值的。
品种筛选 无人机 小麦SPAD值 BP神经网络 特征选择 Variety screening UAV Wheat SPAD values BP neural network Feature selection 
光谱学与光谱分析
2023, 43(6): 1912
作者单位
摘要
1 西安电子科技大学物理与光电工程学院, 陕西 西安 710071
2 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
3 深圳技术大学中德智能制造学院, 广东 深圳 518118
4 深圳大学物理与光电工程学院,光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
为实现对红枣品种的判别,利用高光谱技术并结合机器学习算法对金丝大枣、骏枣和滩枣这三个品种的新疆红枣进行研究。首先,分别利用多元散射校正(MSC)、标准正态变量变换(SNV)、一阶导(1-Der)和Savitzky-Golay(SG)平滑等数据预处理方法对原始光谱进行预处理,研究了预处理方法对建模的影响;然后,利用光谱-理化值共生距离法(SPXY)将样本集划分为校正集和预测集,基于线性判别分析(LDA)、K-最近邻分类(KNN)和支持向量机(SVM)算法对预处理后的全波段光谱建立红枣品种鉴别模型,结果显示,在多种预处理方法中,1-Der的处理效果最好;然后,结合主成分分析(PCA)、连续投影算法(SPA)和竞争性自适应重加权采样(CARS)等特征提取方法对全波段光谱进行特征波段的提取,再基于特征波段建立红枣品种鉴别模型,结果发现,在几种特征提取方法中,基于CARS所提特征波段建立的模型可以获得最高的鉴别准确率;最后,以SVM模型为例对模型运行时间进行了比较,结果发现,基于特征波段所建模型的运行时间远短于基于全波段所建模型的运行时间。
光谱学 高光谱技术 机器学习 品种鉴别 数据预处理 特征波段提取 
中国激光
2020, 47(11): 1111002
作者单位
摘要
1 国家粮食局科学研究院, 北京 100037
2 武汉轻工大学食品科学与工程学院, 湖北 武汉 430023
许多不同的稻谷品种看起来很相似, 但它们的化学成分和最终产品质量却有很大差别, 每年因品种混淆而造成巨大的经济损失, 对稻谷品种的鉴别是发展优质粮食工程的现实需要, 为此提出了一种采用高光谱成像技术实现稻谷品种无损快速鉴别的方法。 主要研究内容和结果如下: (1)在全波段388~1 000 nm范围内采集5个品种共150粒的稻谷高光谱反射率数据, 筛选出差异明显的波段(600~800 nm), 将此波段内每个品种的反射率进行Stacked计算和curve-smoothing平滑处理以增加其区分度。 (2)对5种稻谷经平滑处理后的反射率数据做主成分分析, 找到权值系数最大的波长位于680 nm, 将其作为特征波长。 加载特征波长下的纹理图像, 计算每粒稻谷样品的纹理特征参数: 均值(Mean)、 方差(Variance)、 信息熵(Entropy)和偏差(Skewness)。 利用阈值分割的方法将目标与背景区分开, 计算每粒稻谷形态特征参数: 面积像素数/pixels2、 边界的周长/pixels、 长轴长度/pixels、 短轴长度/pixels。 结合稻谷的纹理特征参数和形态特征参数, 比较Fisher判别分析模型、 偏最小二乘回归模型(PLSR)和人工神经网络模型(ANN)对稻谷品种鉴别的效果。 (3)结果显示, Fisher判别分析中函数1和函数2的累计方差贡献率达到93%, 能够较好地解释稻谷的品种信息。 将样本的函数值与组质心的平方马氏距离(Mahalanobis)做比较, 值相近的作为同一分组类别, 对稻谷品种的整体识别正确率能达到95.3%; 偏最小二成回归模型: Y品种=0.03X均值-0.36X方差-0.24X信息熵+0.37X偏差+0.31X面积-0.32X周长-0.39X长轴长度+0.45X短轴长度, 该回归模型相关系数r=0.98, 校正均方根RMESS=0.29, 交叉验证均方根PMESSCV=0.32, 对稻谷的品种鉴别正确率能达到95%; 构建的ANN模型为具有sigmoid隐含和softmax输出神经元的双层前馈网络, 对150个样品按70%∶15%∶15%的比例随机划分训练集、 测试集、 验证集, 选择共轭梯度法(scaled conjugate gradient)作为训练算法, 以交叉熵(cross-entropy)作为模型的评价指标, 对稻谷品种鉴别的正确率可达到98%。 稻谷品种鉴别的ANN模型在分类精度上优于Fisher判别和PLSR, 选择特征波长下的图像信息建立稻谷品种识别的ANN模型, 对稻谷品种的无损快速鉴别具有重要指导意义。
高光谱 稻谷品种 鉴别 Fisher判别分析 偏最小二乘回归 人工神经网络 Hyperspectral Rice variety Identification Fisher Partial least squares regression Artificial neural network 
光谱学与光谱分析
2019, 39(10): 3273
作者单位
摘要
华东交通大学 机电与车辆工程学院, 江西 南昌 330013
针对厚皮果透光性差、不同柚子品种糖度在线检测要单独建模等问题, 本文以柚子为研究对象, 采集有效光谱325条, 对比分析不同柚子品种在710 nm和800 nm附近的两个吸收峰光谱响应特性。550~970 nm全波段范围内的光谱采用SPA无信息消除后建立柚子偏最小二乘判别模型误判率为1.25%; 偏最小二乘法在550~970 nm全波段范围和去差异化后750~930 nm波段范围的预测相关系数分别为0.58和0.86, 预测均方根误差RMSEP分别为0.84和0.55。实验结果表明, 连续投影法结合偏最小二乘判别模型可以实现不同柚子品种的定性判别, 变异系数法对光谱去差异化后结合最小二乘模型对厚皮果柚子可溶性固形物的定量检测效果最佳, 该研究为不同品种的厚皮果在线分选技术提供了参考和理论依据。
近红外光谱 在线检测 模型 可溶性固形物 品种判别 near-infrared spectroscopy on-line detection universal model soluble solids variety discrimination 
发光学报
2019, 40(6): 808
作者单位
摘要
1 北京理工大学物理学院, 北京 100081
2 宝瑞激光科技(常州)有限公司, 江苏 常州 213000
在提取激光诱导击穿光谱(LIBS)全部特征峰的基础上,利用支持向量机建立了有效的茶叶分类模型。采集了15种茶叶样品的有效LIBS光谱数据(190~720 nm),运用窗口平移平滑和峰位漂移函数修正对光谱进行了预处理,再结合主成分分析降维,对绿茶、红茶、白茶实现了98.3%的识别率;对同一种类中不同品种的茶叶也实现了较好的识别。研究结果表明,LIBS在茶叶品种快速识别应用中具有较好的前景。
光谱学 激光诱导击穿光谱 茶叶品种 快速分类 光谱预处理 主成分分析 支持向量机 
中国激光
2019, 46(3): 0311003
作者单位
摘要
玉溪师范学院 物理系, 云南 玉溪 653100
基于傅里叶变换红外光谱技术, 利用逐步判别分析法对金银花品种和产地进行鉴别研究。采集、测试了5个产地9个品种150份金银花样本的红外光谱, 并计算了各样品红外光谱的一阶导数光谱和二阶导数光谱。分别选用不同的样本组成训练集和检验集, 以1800~900 cm-1、1500~700 cm-1和1200~700 cm-1波数范围的红外光谱、一阶导数光谱和二阶导数光谱数据为判别变量建立判别模型对金银花的品种和产地进行鉴别。判别结果显示, 以1800~900 cm-1波数范围的二阶导数光谱数据为判别变量建立的模型鉴别效果相对较好, 对品种和产地的鉴别正确率依次达93.20%和96.13%。研究结果表明, 采用逐步判别模式识别可以很好地鉴别不同品种和产地的金银花, 方法可行有效, 可为金银花品种和产地朔源提供方法。
傅里叶变换红外光谱 逐步判别分析 金银花 品种 产地 Fourier transform infrared spectroscopy stepwise discrimination analysis honeysuckle variety geographical origin 
光散射学报
2019, 31(1): 94
作者单位
摘要
江西省果蔬采后处理关键技术及质量安全协同创新中心, 江西省高校生物光电及应用重点实验室, 江西 南昌 330045
为了快速识别茶叶品种,提出了激光诱导击穿光谱全光学诊断方法。采集7种茶叶样品在200~480 nm波长范围的激光诱导击穿光谱的全谱数据,分别运用九点平滑和九点平滑/一阶导数方法对光谱进行降噪、消除干扰预处理,再结合主成分分析对预处理后的光谱进行降维。选择判别分析(DA)、径向基函数网络(RBF)和B-P反向传播网络(又称MLP)三种模型对7种茶叶进行品种识别。结果显示:综合九点平滑和一阶导数预处理后,再结合主成分分析降维,可使三种模型对茶叶品种的识别准确率均有一定程度的提高,MLP的识别准确率高于DA和RBF,其训练集识别准确率为99.6%,测试集识别准确率为99.1%。选择合适的激光诱导击穿光谱预处理及模型构建方法,对快速准确识别茶叶品种具有可行性。
光谱学 茶叶品种 快速识别 激光诱导击穿光谱 主成分分析 识别模型 
激光与光电子学进展
2018, 55(2): 023002
作者单位
摘要
1 湖南农业大学苎麻研究所, 湖南 长沙 410128
2 湖南农业大学信息科学技术学院, 湖南 长沙 410128
为了探讨基于高光谱的苎麻品种识别和分类的方法, 在大田栽培条件下, 采集了4个不同基因型苎麻品种共927个叶片高光谱数据。 根据苎麻叶片高光谱反射曲线, 选择了2组特征参数: 基于高光谱波形峰谷反射率和位置参数(V1组)、 基于偏度和峰度参数(V2组)。 运用逐步判别的方法, 通过设置不同F值筛选不同个数的变量, 分别建立基于2组特征参数的多个Fisher线性判别函数, 并从计算量、 正确率和稳定性三方面对所建立的判别函数进行分析比较。 结论: (1)所有组合的判别函数总体平均正确率为911%, 标准差总体均值为12%; (2)综合权衡, 在所有组合中, V2组且14≥变量个数n≥8判别效果最好——计算量中等, 正确率和稳定性均高于平均值, 其中, 13个变量的Fisher判定函数平均正确率最高有942%, 标准差最低为0%; (3)若优先考虑正确率, V1组且22≥变量个数≥15正确率最高, 平均正确率最大有955%, 但计算量比较大, 稳定性中等, 标准差最低为09%。 研究表明, 利用高光谱参数结合逐步判别方法识别苎麻品种是可行的。
苎麻 高光谱 逐步判别分析 品种识别 Ramie Hyperspectral Stepwise discriminant analysis Variety discriminant 
光谱学与光谱分析
2018, 38(5): 1547
作者单位
摘要
1 成都理工大学地球科学学院, 四川 成都 610059
2 中国科学院遥感与数字地球研究所, 遥感科学国家重点实验室, 北京 100101
常规的煤炭鉴别方法需进行繁琐的制样过程, 且需结合多种化学参数指标进行综合判定, 以得到较为准确的分析结果。 提出一种基于500~2 350 nm的可见-近红外全谱段光谱分析技术与多层感知器(multilayer perceptron, MLP)分类方法相结合的块状商品煤鉴别方法。 该方法具有非接触、 无前期制样、 无化学分析的优势, 可快速高效的获取煤炭的分类信息。 采用地物光谱仪采集煤炭原始光谱数据, 对噪声过大、 影响后续处理的谱段进行删除, 剩余部分采用小波阈值去噪法进行噪声去除。 将去噪后的数据分成三个数据集: 可见-近红外光谱(500~900 nm)数据集、 短波红外光谱(1 000~2 350 nm)数据集、 全谱段光谱(500~2 350 nm)数据集。 对以上三个数据集进行主成分分析, 将提取出的25个主成分输入多层感知器分类模型。 多层感知器模型由输入层、 隐藏层(两层)、 softmax分类器构成。 对三个数据集进行分类精度的对比, 并采用随机森林(random forest, RF)与支持向量机(support vector machine, SVM)两种分类算法进行进一步的验证分析。 结果表明: 对块状商品煤分类, 全谱段光谱分析技术由于数据信息量丰富, 能够得到更优的分类效果, 在训练样本数为132时, 采用MLP分类器的分类精度最高, 为9803%; 随机森林与SVM的分类结果验证了全谱段数据集的优越性与普适性。 该研究为煤炭的在线分析、 便携式煤炭检测仪器的研发提供了可靠的技术支持。
全谱段 块状商品煤种类鉴别 多层感知器 主成分分析 Full-spectrum data Variety identification of bulk commercial coal Multilayer perceptron Principal component analysis 
光谱学与光谱分析
2018, 38(2): 352

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!