作者单位
摘要
西北核技术研究所 激光与物质相互作用国家重点实验室, 陕西 西安 710024
气体介质稳定体放电是放电激励气体激光器高效输出的基础和前提, 预电离是实现高压气体介质稳定体放电的有效技术途径之一。基于放电激励脉冲HF激光器电气结构总体设计要求设计了结构紧凑的紫外光自动预电离装置, 并对其在气体介质中预电离产生的初始电子数密度进行了数值模拟。模拟结果表明: 在整个放电区域内初始电子数密度均在109/cm3左右, 满足介质体放电要求。通过激光器能量输出实验评估了预电离效果, 对SF6和H2混合气体介质, 在充电电压较低时, 输出能量有数倍的提高; 对SF6和C2H6混合气体介质, 在充电电压20 kV时激光器输出能量由200 mJ提高至297 mJ, 提高了近50%。实验结果表明: 该预电离装置对改善激光器能量输出特性有明显效果。
预电离 放电激励 HF激光器 体放电 数值模拟 preionization discharge-initiated HF laser volume discharge numerical simulation 
红外与激光工程
2017, 46(6): 0605005
作者单位
摘要
1 河北大学物理科学与技术学院, 河北 保定 071002
2 河北大学质量技术监督学院, 河北 保定 071002
在放电间隙较大(d=3.8 mm)的介质阻挡放电(DBD)中, 通过减小放电区域(S=1 cm×1 cm), 首次观察到了单个新型放电丝。与其他实验小组所观察到的单个放电丝相比, 该单个新型放电丝由体放电(VD)和沿面放电(SD)二部分构成, 其放电稳定性和持续性极好。利用高速照相机和光谱仪, 研究了单个新型放电丝在外加电压半周期单次放电中的放电特征和单个新型放电丝侧面放电柱不同位置的等离子体状态。在高速照相机不同曝光时间条件下拍摄得到了单个新型放电丝端面和侧面放电的瞬时照片, 并对其外加电压半周期单次放电的放电特征与辉光放电进行了对比。利用发射光谱法, 采集了单个新型放电丝侧面放电柱不同位置的氩原子763.26 nm(2P6→1S5)和772.13 nm(2P2→1S3)发射谱线, 并通过两条谱线强度比法, 估算出了相应的电子激发温度。实验结果得出: 单个新型放电丝由体放电和沿面放电构成, 且沿面放电在体放电四周呈枝状扩散;单个新型放电丝在外加电压半周期单次放电中与辉光放电特征相似, 且在阴极呈现出漏斗状放电;氩原子谱线强度及其相应的电子激发温度从极板两端到中间均呈减小的变化趋势, 表明单个新型放电丝侧面放电柱不同位置的等离子体状态不同。
介质阻挡放电 体放电 沿面放电 电子激发温度 Dielectric barrier discharge Volume discharge Surface discharge Electron excitation temperature 
光谱学与光谱分析
2015, 35(1): 56
作者单位
摘要
河北大学物理科学与技术学院, 河北 保定071002
在放电间隙较大的介质阻挡放电中, 利用高速照相机, 同时观察到了体放电(VD)和沿面放电(SD)。 采用光谱法, 研究了VD和SD的光谱线形随放电参数的变化。 在氩气介质阻挡放电中, 测量了VD和SD的Ar Ⅰ(2P2→1S5)谱线展宽和频移随气压及放电间隙的变化。 结果发现: SD的展宽和频移均比VD的大, 说明SD的电子密度高于VD的电子密度; 随着压强从40 kPa增大到60 kPa, VD和SD的谱线展宽及频移均增加, 表明它们的电子密度均随压强的增大而升高; 随着d值从3.8 mm增大到4.4 mm, VD和SD的谱线展宽也增加, 反映它们的电子密度均随d值的增大而增加。
介质阻挡放电 体放电 沿面放电 谱线展宽 谱线频移 Dielectric barrier discharge Volume discharge Surface discharge Width of spectral line Shift of spectral line 
光谱学与光谱分析
2014, 34(2): 308
作者单位
摘要
华中科技大学 光学与电子信息学院 武汉光电国家实验室,武汉 430074
自持体放电又称大气压脉冲放电或脉冲辉光放电,是一种利用微秒-亚微秒量级脉冲在大气压下获得大体积等离子体的放电形式。为了测量自持体放电过程中气体温度的演化,采用光谱拟合的方法,对氮分子第二正带光谱进行了理论分析。并对两套横向激励大气压(TEA)气体激光器放电系统(准分子放电腔快放电系统,TEA CO2激光器放电腔慢放电系统)的等离子体时域分辨分子光谱进行了测量,并拟合了气体转动温度,取得了两种不同放电结构放电过程中气体温度演化的数据。结果表明,准分子放电腔快放电过程中总的能量注入密度为1.3×105J/m3时,温度升高92K,TEA CO2激光器放电腔慢放电过程中总的能量注入密度为7×104J/m3时,温度升高约50K,两套系统温度升高比对应于总的注入能量密度比。这一结果对研究自持体放电机理提高放电稳定性是有帮助的。
光谱学 自持体放电 分子光谱 等离子发射光谱 气体温度 spectroscopy self-sustained volume discharge molecular spectra plasma emission spectrum gas temperature 
激光技术
2013, 37(5): 642
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所 激光与物质相互作用国家重点实验室,吉林 长春 130033
2 中国科学院 研究生院,北京 100049
基于化学反应的非链式脉冲DF激光器是产生35~41 μm波段的有效相干辐射光源,具有存储能量水平高等优点。这些优点使得该激光器倍受中红外领域激光研究者的重视。为了更好地提高非链式脉冲DF激光器的输出性能,研制高能量水平的DF激光器,本文详细介绍了自引发大体积放电技术、混合气体配比技术、循环冷却技术等DF激光器关键技术,重点介绍了自引发大体积放电技术。这几种技术将为研制高性能DF激光器提供理论指导。
非链式DF激光器 自引发体放电 混合气体配比 循环冷却技术 non-chain DF laser self-initiated volume discharge mixture gas ratio recirculating and cooling 
中国光学
2011, 4(3): 313
作者单位
摘要
1 俄罗斯科学院 高能密度研究所 高温实验室,莫斯科 125412
2 俄罗斯科学院 普罗霍罗夫普通物理研究所,莫斯科 119991
3 中国科学院 长春光学精密机械与物理研究所,激光与物质相互作用国家重点实验室,吉林 长春 130033
报道了放电引发的非链式HF(DF)激光器中的激活介质由电子碰撞负离子分离引起的电离非稳定性。这种非稳性出现在电极空间分离、脉冲CO2激光加热的基于SF6的混合气体的大体积放电中。实验研究了自引发体放电过程中由激光加热引起的放电等离子体的自组织现象以及由此在放电间隙的大部分区域形成的准周期等离子体结构。重点分析了等离子体结构随气体温度和注入能量的变化,讨论了等离子体自组织对电子碰撞分离不稳定性所产生的影响,解释了混合气体中由于电子碰撞使负离子消失导致的单等离子体通道移动的产生机理。
HF/DF激光器 电离非稳定性 自组织现象 自引发体放电 等离子体结构 HF(DF) laser electron detachment instability self-organization phenomenon self-sustained volume discharge plasma structure 
中国光学
2011, 4(1): 31
作者单位
摘要
1 国家科学研究中心激光实验室,俄罗斯,弗拉基米尔地区
2 俄罗斯科学院 普罗霍罗夫普通物理研究所,莫斯科 119991
研制了高功率、高重频非链式HF激光器,并研究了脉冲模式和重频模式下在SF6的混合气中增加电极边缘电场强度而不使用其它措施即可实现自持体引发放电的可能性,得到了重复频率为20 Hz,脉冲能量为67 J,转换效率为3%的激光输出。
化学激光器 非链式脉冲HF激光器 自引发体放电 SF6混合气体 chemical laser non-chain pulsed HF laser self-sustained volume discharge SF6-based mixture 
中国光学
2011, 4(1): 26
作者单位
摘要
High Current Electronics Institute, Tomsk 634055, Russia
研究了氮气中的高压体(扩散)放电特性,实验中施加的极间隙脉冲电压达数百千伏,持续时间为数纳秒,上升时间为几个纳秒,给出了实验结果。研究了氦气压强为(0.4~2)×105 Pa时,从扩散形式到火花放电的放电转换过程。确定了在氮气压强下电流幅度与逃逸电子束电流脉宽的关系。结果表明,导致隙间扩散放电的超短雪崩电子束(SAEB)对放电过程有重要的影响。在该压强下得出了SAEB瞬间产生相对放电电流的时延与压强的关系,根据该关系,时延随着压强增加而变化,并且在压强为2×105 Pa时最小,同时扩散放电电流脉冲的峰值随压强增加而减小。在0.5×105 Pa的压强下,使用刀片电极和6 cm长的N2∶SF6=10∶1的激活媒质,得到了输出能量为2 mJ、脉冲功率为0.55 MW的激光。最后,在大气压强下,对AlBe箔片进行了重复频率放电处理(REP),其表层清除了碳而且氧原子以450 nm/300 pulse渗入箔片。
体放电 扩散放电 非均匀电场 逃逸电子 紫外激光器 修饰及清洁 volume discharge diffuse discharge non-uniform electric field runaway electrons UV laser modification and cleaning 
光学 精密工程
2011, 19(2): 273
作者单位
摘要
Institute of High Current Electronics SB RAS, Akademichesky ave., 2/3, Tomsk 634055, Russia
研制了适用于激光器的电感储能发生器(GIES),并研究了它在高压混合气体中的放电和激光参数。研究表明,电感储能发生器可产生高压预脉冲并引起放电电流的突然增大,可在不同的混合气体中形成长时间的稳定放电,从而方便地控制和优化每一种气体混合物的预脉冲参数。在未知IES击穿电压和首次放电幅度下的参数时,电流尖峰会按因子1.5~2减少,从而产生纯激光参数。得到了氮气激光器的最大的辐射功率,输出能量和脉冲持续时间,在脉冲持续时间为40 ns时,紫外输出高达50 mJ,红外输出高于25 mJ,实现了氮分子激光跃迁的级联激射。因此C3Пu-B3Пg带总的脉冲持续时间延长至100 ns。在XeCl,XeF和KrF受激准分子激光器中,脉冲宽度和输出能量都得到了改善。XeF激光器的最大效率达到了1.6%,同时峰值输出能量达到了0.85 J,最大脉冲持续时间超过了200 ns。在248 nm波长处,效率3.3%的KrF激光器产生的160 ns脉冲能量高达650 mJ,最终得到了效率为7.7%~10%的非链式HF(DF)激光器。演示了基于CO2分子高峰值功率的有效运行,结果表明,激光器在10 600 nm处的输出能量为6.2 J,转换效率高达25%。
电感储能发生器 高压气体体放电 激光参数 Generator with Inductive Energy Storage(GIES) volume discharge in high pressure gas laser parameter 
光学 精密工程
2011, 19(2): 213
作者单位
摘要
1 西安电子科技大学技术物理学院,西安,710071
2 华中科技大学激光技术国家重点实验室,武汉,430074
通过两种放电等离子体形成的模型,研究了自持体放电的形成过程,介绍了能量注入激光介质的特点,并以不稳定模型解释了体放电收缩过程.分析了各阶段放电对激光输出特性的影响,并给出了较好的放电实验参数.
体放电 能量注入 放电收缩 volume discharge energy injection contraction of discharge 
光学与光电技术
2004, 2(6): 38

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!