初学峰 1,2,*胡小军 1,2张祺 1,2黄林茂 1,2谢意含 1,2
作者单位
摘要
1 吉林建筑大学 寒地建筑综合节能教育部重点实验室,吉林 长春 130118
2 吉林建筑大学 电气与计算机学院,吉林 长春 130118
为了提高薄膜晶体管的性能,本文基于射频磁控溅射技术,采用氧化锌锡(ZTO)材料作为沟道层,在SiO2/p-Si衬底上制备高性能ZTO薄膜晶体管。采用AFM、XRD、UV-Vis研究了溅射功率对ZTO薄膜的表面形貌和光学性能的影响。使用半导体参数仪对ZTO薄膜晶体管进行电学性能的测试,利用XPS分析研究溅射功率对ZTO薄膜中元素组成和价态的影响,探索高性能薄膜晶体管的原理机制。实验结果表明,所有ZTO薄膜样品是非晶结构,表面致密,透光率均大于90%。适当增加溅射功率能够改善ZTO薄膜晶体管的电学性能。在90 W溅射功率下制备的薄膜晶体管综合性能较好,其饱和迁移率达到了15.61 cm2/(V·s),亚阈值摆幅为0.30 V/decade,阈值电压为-5.06 V,电流开关比为8.92×109
薄膜晶体管 溅射功率 XPS分析 ZTO薄膜 thin-film transistor sputtering power XPS analysis ZTO thin film 
液晶与显示
2024, 39(1): 40
作者单位
摘要
电子科技大学 光电科学与工程学院,成都 610054
为研究磁控溅射的衬底温度、氧氩比、沉积时间和工作气体流量对混合相VOx薄膜电学性能的影响,采用正交实验法,设计了4因素4水平16组实验,实施实验并记录样品电阻温度系数(TCR)和方阻值,分析薄膜电学性能随不同因素不同水平的变化趋势;然后,结合均值和方差分析以及XPS分析,得到不同因素影响混合相VOx薄膜电学性能程度的大小依次为:工作气体流量,衬底温度,氧氩比,沉积时间。最后,得出制备混合相VOx薄膜的优选参数:溅射电流0.3 A,衬底温度270 ℃,氧氩比2.8%,沉积时间20 min,工作气体流量120 cm3/min,测试结果显示,其TCR为-2.65%/K,方阻为1 102.1 kΩ/□。
磁控溅射 正交实验 XPS分析 优选参数 VOx VOx magnetron sputtering orthogonal experiment XPS optimal parameter 
半导体光电
2023, 44(3): 382
Yuan Liu 1,2Xu Lian 2,3Zhangdi Xie 2Jinlin Yang 2[ ... ]Wei Chen 1,2,4,*
作者单位
摘要
1 Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
2 Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
3 Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
4 Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
Fluorination Phthalocyanines Sodium metal anode Sodiophilic sites In-situ X-ray photoelectron spectroscopy (XPS) 
Frontiers of Optoelectronics
2022, 15(2): s12200
作者单位
摘要
1 沈阳师范大学生命科学学院, 辽宁 沈阳 110034
3 陕西科技大学环境科学与工程学院, 陕西 西安 710021
土壤修复是“十四五”期间国家重点支持的环保领域, 是实现社会可持续发展的重要保障。 与其他方法相比, 植物修复技术整体优势突出, 对于土壤重金属的去除净化更为有效。 原生质体是植物细胞代谢活动的重要场所, 相对于细胞壁而言, 原生质体对重金属胁迫的生理响应同样强烈。 现阶段, 同类植物修复机制研究多从分子生物学层面切入; 本研究则从谱学角度展开, 初步探究植物原生质体对土壤重金属的反馈信号。 以代表性的菊科植物金盏菊为研究对象, 通过Pb/Cd胁迫盆栽实验获取金盏菊样本, 差速冷冻离心法得到金盏菊原生质体。 引入Tessier连续提取-原子吸收光谱法(AAS)揭示胁迫强度与Pb/Cd赋存形态的内在关联, 结合X射线衍射光谱(XRD)、 傅里叶变换红外光谱(FTIR)、 二维相关红外光谱(2D-IR)和X射线光电子能谱(XPS)识别金盏菊原生质体对Pb/Cd响应的谱学表现。 结果表明: 金盏菊原生质体可交换态Pb/Cd比例不高, 胁迫强度对不同形态Cd含量影响很小。 XRD图谱最强信号出现在31.7°(NaCl晶体), 同时检测出Pb盐 [Pb5(PO4)3Cl] 和Cd盐(CdS)特征峰。 FTIR图谱的3 510 cm-1附近强吸收带源于—OH伸缩振动, 胁迫过程导致峰形杂乱、 峰位偏移; 2D-IR结果说明Pb/Cd优先与金盏菊原生质体—OH和C=O结合。 从XPS图谱可以看出, 反应前后原生质体C, O元素结合能有异。 C(1s)结合能略有增加, 说明C原子参与了配位反应; O(1s)峰位有所偏转, 暗示含O基团对Pb/Cd的结合包含多种途径。 新出现的Pb(4f)峰源于π电子-Pb的交互作用; 胁迫浓度增加导致Cd(3d)结合能升高, 表明Cd具有明显失电子倾向。 相关结果可以与前期获得的Pb/Cd/金盏菊细胞壁结合特性互为补充, 对于完善同领域的深度和广度、 构建植物修复理论和技术体系意义重大。
原生质体 金盏菊 铅/镉 Protoplast Calendula officinalis Two-dimensional infrared spectroscopy X-ray photoelectron spectroscopy Lead/cadmium 2D-IR XPS 
光谱学与光谱分析
2022, 42(5): 1420
刘丽杰 1,*赵有文 1,2黄勇 3赵宇 3[ ... ]谢辉 1
作者单位
摘要
1 中国科学院半导体研究所 材料重点实验室 北京市低维半导体材料与器件重点实验室,北京 100083
2 中国科学院大学 材料科学与光电技术学院,北京 100049
3 中国科学院苏州纳米技术与纳米仿生研究所 纳米器件与应用重点实验室,江苏 苏州 215123
采用全反射X射线荧光光谱(total reflection X-ray fluorescence,TXRF)和X射线光电子能谱(X-ray photo-electron spectroscopy,XPS)检测方法研究InAs衬底化学机械抛光后经过不同湿法化学溶液联合作用后衬底表面的金属杂质残留浓度和氧化物组分的变化。湿法化学清洗后的InAs表面检测到金属杂质Si,K和Ca,它们的浓度随溶液组合的变化而变化。金属杂质残留浓度较高的InAs衬底表面同时也测得较多粒径为80 nm的颗粒。提出了一种行之有效的InAs衬底湿化学清洗方法,可制备出金属杂质残留少、颗粒少、氧化层薄InAs衬底表面,此表面有利于MOCVD方法生长高质量InAs/GaSb超晶格红外探测器外延。
砷化铟 衬底 表面清洗 全反射X射线荧光光谱 X射线光电子能谱 InAs substrate surface cleaning total reflection X-ray fluorescence(TXRF) X-ray photo-electron spectroscopy(XPS 
红外与毫米波学报
2022, 41(2): 420
作者单位
摘要
1 广东省隧道结构智能监控与维护企业重点实验室, 广东 广州 511458
3 安徽工业大学建筑工程学院, 安徽 马鞍山 243032
以渗透结晶防水材料为研究对象, 将渗透结晶防水材料掺入水泥基材料制备水泥基渗透结晶防水材料。 基于X射线衍射仪(XRD)和傅里叶红外光谱仪(FTIR)分析了渗透结晶防水材料的组分, 在此基础上研究了渗透结晶防水材料对构件力学性能的影响, 利用扫描电子显微镜(SEM)与X射线衍射仪(XRD)对水泥基渗透结晶防水材料构件的微观形貌和物相组成进行分析, 结合抗压强度回复率、 抗渗压力等相关数据, 阐明水泥基渗透结晶防水材料作用机理。 研究表明, 渗透结晶防水材料的主要成分为氧化钙、 硅酸钠、 二硅酸钠、 碳酸钙、 氢氧化钙、 稠环芳烃类减水剂、 乙二胺四乙酸盐。 掺入渗透结晶防水材料的水泥基渗透结晶防水材料, 其力学性能、 抗渗性能、 自愈合性能优越, 即7, 14和28 d的抗折强度分别为2.65, 3.29和4.35 MPa, 抗压强度分别为12.11, 14.57和16.77 MPa; 一次抗渗压力与二次抗渗压力分别为0.8和0.9 MPa; 7, 14, 28和56 d的抗压回复率分别为80.91%, 90.35%, 100.44%和105.90%。 水泥基渗透结晶防水材料的作用机理: 渗透结晶防水材料中硅酸钠、 二硅酸钠与水泥中的钙离子发生反应形成水化硅酸钙凝胶(C—S—H凝胶), 有效修补裂缝; 氧化钙、 碳酸钙以及氢氧化钙作为钙离子补偿剂提供大量钙离子, 在水环境下有效促使裂缝愈合; 碳酸钙在水环境中缓慢溶解产生Ca2+, CO32-以及HCO3-, CO32-与HCO3-结合大量钙离子生成碳酸钙结晶, 与C—S—H凝胶协同作用对水泥基材料的裂缝进行封堵。
光谱学分析 渗透结晶防水材料 机理 Spectroscopy analysis XRD XPS FTIR SEM Permeable crystalline waterproof material Mechanism XRD XPS FTIR SEM 
光谱学与光谱分析
2021, 41(12): 3909
作者单位
摘要
1 中国矿业大学(北京)化学与环境工程学院, 北京 100083
2 中国农业科学院农业资源与农业区划研究所/农业农村部植物营养与肥料重点实验室, 北京 100081
3 安徽农业大学资源与环境学院/农田生态保育与污染防控安徽省重点实验室, 安徽 合肥 230036
尿素是我国主要的氮肥品种, 但其活性高, 在土壤中水解后极易通过挥发和淋洗损失, 利用率低, 造成养分资源浪费并污染环境。 使用有机酸对尿素进行改性可以延缓尿素分解, 提高尿素利用率, 但有机酸与尿素的结合方式及其增效机理尚不明确。 研究中选取柠檬酸和水杨酸两种小分子有机酸作为添加剂, 分别加入到熔融尿素中, 获得柠檬酸尿素与水杨酸尿素。 利用傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)分析材料的化学结构, 利用液相色谱-质谱联用(LC-MS)研究材料的物质组成及相对分子质量, 尝试通过以上多谱学的分析方法, 明晰两种有机酸与尿素的结合方式。 结果表明, 柠檬酸和水杨酸与尿素结合后, FTIR在3 348 cm-1处产生了加强的伯胺振动峰, 推测小分子有机酸与尿素在伯胺处发生了反应。 XPS C(1s)和N(1s)图谱分别出现新的碳结构(—CX)和新的氮结构(—NX), 降低了柠檬酸/水杨酸中原有羧基碳结构和尿素中酰胺基氮结构的相对含量, O(1s)图谱出现C—OH化学键断裂, 表明, 柠檬酸/水杨酸的羧基与尿素的酰胺基相互作用生成了新的物质。 LC-MS分析发现柠檬酸尿素/水杨酸尿素中的新物质可能是柠檬酸/水杨酸的羧基与尿素的酰胺基发生脱水反应, 生成含有O=C—NH—C(O)—NH2结构的物质。 因此, 利用光谱分析等手段明晰了有机酸与尿素的结合方式与结合产物特征, 为有机高分子与尿素反应机理的研究提供了理论依据, 为后续高效肥料增效剂的筛选提供了方向。
尿素 小分子有机酸 分子结构 傅里叶变换红外光谱 X射线光电子能谱 液相色谱质谱联用 Urea Low-molecular-weight organic acid Molecular structure FTIR XPS LC-MS 
光谱学与光谱分析
2021, 41(10): 3129
张帆 1,2王荣新 3黄思溢 1田爱琴 1[ ... ]杨辉 1,2
作者单位
摘要
1 中国科学院苏州纳米技术与纳米仿生研究所 纳米器件与相关材料研究部, 江苏 苏州 215123
2 上海科技大学 物质科学与技术学院, 上海 201210
3 中国科学院苏州纳米技术与纳米仿生研究所 纳米真空互联实验平台, 江苏 苏州 215123
近几年,Ⅲ-Ⅴ族半导体GaN由于其宽直接带隙,在高温、高功率器件方面得到了广泛研究。但是,目前GaN器件的性能依然受到了p型欧姆接触性能不良的限制,在长期使用过程或高温环境中激光器等器件性能退化严重。因此,获得性能优异的p-GaN接触仍然是一个巨大的挑战。虽然Pd基的金属体系已然在p-GaN获得了欧姆接触,但是Pd与GaN接触之后的微观结构及其高温特性尚不为人知。本文针对常用于p型GaN接触的第一层金属Pd材料,讨论了Pd/p-GaN接触界面的特性和退化机制。通过四探针测试仪、X射线光电子能谱(XPS)和原子力显微镜(AFM)实验测试和分析对比,发现Pd/p-GaN界面受到氧气和温度影响的退化过程。高温退火在界面处促成Ga-Pd合金相生成利于形成良好的接触,但是在有氧参与的情况下,金属的氧化反应超越其他因素成为主导,致使界面和性能发生明显的退化。温度越高退化越严重,甚至表面形貌状态完全改变,由平滑的原子台阶形貌转化呈现出树枝状晶粒状态。因此,保持Pd与p-GaN界面清洁、控制界面的氧成分不仅是形成合金态获得良好接触的关键,而且也关系着器件的长期稳定和可靠,是防止器件性能衰减和退化要害所在。
p型GaN 欧姆接触 界面 p-GaN Ohmic contact XPS XPS interface 
发光学报
2021, 42(7): 1065
作者单位
摘要
太原科技大学环境与安全学院, 山西 太原 030024
硒是动植物及人体生长必需的十五种微量元素之一, 具有清除体内自由基、 抗氧化、 增强免疫力等功能, 但其安全剂量的范围却很窄。 利用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对湿法球磨制备的硫铁矿形貌进行了表征。 SEM观测发现加乙醇助磨后的硫铁矿为粒径大小较均匀的球形颗粒团聚体, 粒径范围在17~200 nm之间, 平均粒径138 nm。 XRD衍射图谱中的特征峰与FeS2衍射图谱中各峰位置基本一致, 因此判定硫铁矿中主要化学组分为FeS2, 且图谱中基本没有杂峰, 表明制备过程中并未混入杂质, 样品纯度较高。 实验结果表明, 该法制备的硫铁矿具有颗粒粒径小、 比表面积大、 反应活性高等优点。 研究中利用X射线光电子能谱仪(XPS)对硫铁矿去除水体中SeO2-3的机理进行了研究。 研究结果表明, (1)在较为广泛的实验pH范围(pH 2.2~11.5), 硫铁矿均能有效去除水体中SeO2-3, 去除效率(除pH值7.8以外)均达到90%以上; (2)硫铁矿与SeO2-3发生反应后, 其主要组成元素的XPS特征峰结合能有所减小, 表明硫铁矿表面发生了一定化学变化; (3)酸碱环境下硫铁矿去除SeO2-3的机理不完全相同, 酸性环境下, 硫铁矿对SeO2-3的去除是单纯的氧化还原过程, 即硫铁矿中被酸活化的S2-2将SeO2-3还原为单质Se(0), 并且酸性越强, SeO2-3去除效果越好; 碱性环境下, SeO2-3的去除过程中氧化还原与络合反应并存, 硫铁矿表面有络合态Fe(OH)SeO3和单质Se(0)两种存在形态, 且碱性越强, 络合态Fe(OH)SeO3含量越高。 以上研究结果为硫铁矿去除固定水体和土壤中以SeO2-3为代表的可变价金属阴离子提供重要理论依据和应用基础。
X射线光电子能谱 硫铁矿 氧化还原 络合反应 XPS Pyrite SeO2-3 SeO2-3 pH pH Redox Complexation reaction 
光谱学与光谱分析
2021, 41(5): 1458
作者单位
摘要
1 中南林业科技大学材料科学与工程学院, 湖南 长沙 410004
2 湘南学院美术与设计学院, 湖南 郴州 423000
3 中国林业科学研究院木材工业研究所, 北京 100091
杉木进行硅酸盐浸渍改性处理后, 木材内部的改性剂相关元素含量与分布是衡量浸渍效果的重要指标, 对改性杉木的各项物理力学性能有着至关重要的作用。 以硅酸盐为浸渍改性剂, 采用仿生呼吸法对杉木进行浸渍改性。 研究了仿生呼吸法对硅酸盐改性杉木的密度、 抗弯强度、 抗压强度、 三切面硬度和24 h吸水率影响, 利用XPS和FTIR分析了杉木素材与改性材的化学成份与化学结构, 并对硅酸盐改性剂在改性杉木中的分布深度与分布规律进行了探讨。 结果表明: 经过硅酸盐浸渍改性后, 改性杉木平均密度大于0.721 g·cm-3, 抗弯强度和抗压强度分别增大了170.19%和286.64%。 改性杉木横切面、 径切面和弦切面的硬度均有不同程度的提高。 硅酸盐改性使杉木的24 h吸水率从91.17%±2.51%降至39.23%±1.62%, 表明杉木的尺寸稳定性大幅度提高。 相比于杉木素材, 改性杉木木材的XPS全谱扫描中出现了Na元素和Si元素的吸收峰, 窄扫谱图中出现了Si—O—C和Na—O化学结构。 同时, 改性杉木木材的FTIR谱图中出现了Si—O—Si的吸收峰, 并且游离羟基含量减少, 缔合羟基增多。 XPS和FTIR分析都表明硅酸盐浸注到了杉木木材的孔隙中, 且硅酸钠与杉木木材中羟基形成了化学键结合和氢键结合。 这也是改性杉木的力学性能和耐水性能提高的重要原因。 另外, 通过XPS测试发现改性杉木木材沿横向从表面到30 mm处都出现了C, O, Na和Si元素, 并且沿横向从表面到30 mm处, Si—O—C结合结构的吸收峰强度基本相同, 说明从表面到中间部位, 硅酸钠与杉木木材中的羟基都较均匀地形成了化学键。 对各元素进行定量分析发现, 改性杉木木材中C, O, Na和Si元素的相对含量从表面到中间部位(30 mm)差异较小, 进一步表明改性剂能较好浸入杉木木材中间, 并且均匀性较好。 研究结果将为杉木浸渍改性效果提供数据支撑, 并为优化改性工艺与方法、 进一步提高改性杉木的物理力学性能提供依据。
杉木 硅酸盐 仿生呼吸法 Chinese fir Silicate Biomimetic respiration method XPS XPS FTIR FTIR 
光谱学与光谱分析
2021, 41(5): 1430

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!