作者单位
摘要
1 Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China
2 Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
3 Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
4 State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
black phosphorus (BP) delivery nanoplatform bioimaging cancer therapy bone regeneration 
Frontiers of Optoelectronics
2020, 13(4): 327
Author Affiliations
Abstract
1 Science and Technology Innovation Center Guangzhou University of Chinese Medicine Guangzhou 510405, P. R. China
2 State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau Macau, P. R. China
3 Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province Shenzhen University, Shenzhen 518060, P. R. China
Black phosphorus (BP) or phosphorene, a new superstar among two-dimensional (2D) materials, has sparked huge scientific interest since its discovery in 2014. BP offers unique characteristics including high drug loading efficiency, excellent photodynamic and photothermal properties and good biocompatibility. These characteristics expand versatility of BP in nanomedicine. Although the outlook of BP seems promising, its practical biomedical applications are still at the very initial stage especially in comparison to other thoroughly investigated inorganic nanomaterials. This paper reviews BP structure and properties as well as its preparation approaches with the emphasis on techniques to improve BP stability and biocompatibility for their further usage in physiological environment. Meanwhile, recent progress made in various biomedical research fields from bioimaging to biosensing is discussed. Last, but not least, current challenges and prospects for BP in biomedicine are briefly examined, which will be useful to guide future developments of BP.
Black phosphorus bioimaging cancer therapy drug delivery biosensing 
Journal of Innovative Optical Health Sciences
2020, 13(5): 2030008
作者单位
摘要
Centre for Medical Radiation Physics, University of Wollongong, Wollongong NSW 2522, Australia
fiber-optic dosimetry scintillators X-ray Cherenkov radiation cancer therapy microbeam radiation therapy (MRT) 
Frontiers of Optoelectronics
2018, 11(1): 0123
作者单位
摘要
1 哈尔滨工程大学 材料科学与化学工程学院, 黑龙江 哈尔滨 150001
2 中国科学院长春应用化学研究所 稀土资源利用国家重点实验室, 吉林 长春 130022
稀土上转换荧光材料因为其独特的4f电子能级排布所带来的特殊光学、磁性等物理性质而受到研究人员的广泛关注。特别是其独特的反斯托克斯光学性质所带来的近红外激光响应及紫外至近红外光区内丰富的荧光发射性质, 更是被认为在荧光标记、生物成像、光学分析等领域具有重大的应用潜质。近些年, 伴随材料软化学制备方法的进步, 稀土上转换纳米材料的发光性质及其在多个领域内的应用研究取得了很大的进展。本文主要对稀土上转换荧光材料的发光性质调变及其在生物成像以及癌症治疗领域的应用研究进展加以阐述。
稀土上转换荧光材料 发光性质 生物成像 癌症治疗 lanthanide upconversion fluorescence materials luminescence property bio-imaging cancer therapy 
发光学报
2018, 39(1): 92
Author Affiliations
Abstract
1 Stephenson Research and Technology Center, University of Oklahoma Norman, Oklahoma 73019, USA
2 School of Electrical and Computer Engineering, University of Oklahoma Norman,Oklahoma 73019, USA
Photoacoustic imaging (PAI), also known as optoacoustic imaging, is a rapidly growing imaging modality with potential in medical diagnosis and therapy monitoring. This paper focuses on the techniques of prostate PAI and its potential applications in prostate cancer detection. Transurethral light delivery combined with transrectal ultrasound detection overcomes light scattering in the surrounding tissue and provides optimal photoacoustic signals while minimizing invasiveness. While label-free PAI based on endogenous contrast has promising potential for prostate cancer detection, exogenous contrast agents can further enhance the sensitivity and specificity of prostate cancer PAI. Further in vivo studies are required in order to achieve the translation of prostate PAI to clinical implementation. The minimal invasiveness, relatively low cost, high specificity and sensitivity, and real-time imaging capability are valuable advantages of PAI that may improve the current prostate cancer management in clinic.
Photoacoustic/optoacoustic imaging prostate cancer cancer therapy monitoring prostate endoscopy cellular imaging 
Journal of Innovative Optical Health Sciences
2017, 10(4): 1730008
Author Affiliations
Abstract
1 Department of Advanced Interdisciplinary Sciences, Utsunomiya University, Yohtoh 7-1-2, Utsunomiya 321-8585, Japan
2 CORE (Center for Optical Research and Education), Utsunomiya University, Yohtoh 7-1-2, Utsunomiya 321-8585, Japan
3 School of Computer Engineering and Sciences, Shanghai University, Shanghai 200444, China
4 Institute of Modern Physics, Fudan University, Shanghai 200433, China
5 Department of Physics, National University of Defense Technology, Changsha 410073, China
6 Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
An ion beam has the unique feature of being able to deposit its main energy inside a human body to kill cancer cells or inside material. However, conventional ion accelerators tend to be huge in size and cost. In this paper, a future intenselaser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, and the ion particle energy control. In the study, each component is designed to control the ion beam quality by particle simulations. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical-density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser–target interaction.
Intense short-pulse laser laser ion acceleration laser ion cancer therapy laser–plasma interaction 
High Power Laser Science and Engineering
2014, 2(1): 010000e4
作者单位
摘要
1 中国科学院大学, 北京 100049
2 中国科学院 近代物理研究所, 兰州 730000
紧凑型回旋加速器作为重离子医学专用装置同步加速器的注入器,其引出系统设计所用的磁场为TOSCA模型计算磁场。通过单粒子轨道计算确定引出系统的元件类型及基本参数;通过多粒子跟踪确定最终的元件参数和束流参数。为了提高引出效率,改善引出束流品质,在引出位置磁场梯度较大的位置,安放了一块C型磁铁,以改善此处的磁场梯度。同时,为了消除此C型磁铁对主磁场的影响,在此区域安放了一对线圈。计算结果表明引出系统的设计能够保证引出束流的强度和品质符合同步加速器的要求。
紧凑型 重离子 回旋加速器 束流 肿瘤治疗 compact heavy ion cyclotron beam current cancer therapy 
强激光与粒子束
2013, 25(11): 2991
李强 1,2,3,4
作者单位
摘要
1 国立放射医学综合研究所,日本千叶
2 263-8555
3 中国科学院近代物理研究所,中国甘肃
4 兰州,730000
本文简略地回顾了重离子治疗的历史,更多的兴趣集中在重离子治癌的进展上.为了利用重离子的优越特性(例如:剂量局域性和高的生物效率),已经开发了几种技术.在临床试验中获得了令人鼓舞的治疗效果,广泛地提出了物理和辐射生物方面的临床结果和治疗技术,概要地分析了重离子治癌的前景.
重离子治癌 剂量局域性 高的相对生物效率 临床试验 heavy-ion cancer therapy dose localization high relative biological effectiveness clinical trial 
激光生物学报
2003, 12(5): 386

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!