Author Affiliations
Abstract
1 iXblue Photonics, Rue Paul Sabatier, 22300 Lannion, France
2 iXblue, 34 Rue de la Croix de Fer, 78100 Saint-Germain-en-Laye, France
3 Laboratoire Hubert Curien, UJM-CNRS-IOGS, 18 Rue Professeur Benoît Lauras, 42000 Saint-Etienne, France
A recent JEOS-RP publication proposed Comments about Dispersion of Light Waves, and we present here complementary comments for birefringence dispersion in polarization-maintaining (PM) fibers, and for its measurement techniques based on channeled spectrum analysis. We start by a study of early seminal papers, and we propose additional explanations to get a simpler understanding of the subject. A geometrical construction is described to relate phase birefringence to group birefringence, and it is applied to the measurement of several kinds of PM fibers using stress-induced photo-elasticity, or shape birefringence. These measurements confirm clearly that the difference between group birefringence and phase birefringence is limited to 15–20% in stress-induced PM fibers (bow-tie, panda, or tiger-eye), but that it can get up to a 3-fold factor with an elliptical-core (E-core) fiber. There are also surprising results with solid-core micro-structured PM fibers, that are based on shape birefringence, as E-core fibers.
Birefringence Birefringence dispersion Channeled-spectrum analysis Group birefringence Phase birefringence Polarization-maintaining fiber Polarization-mode dispersion 
Journal of the European Optical Society-Rapid Publications
2023, 19(1): 2022014
作者单位
摘要
1 海军航空大学航空作战勤务学院,山东 烟台 264000
2 烟台大学光电信息科学与工程学院,山东 烟台 264000
3 中国人民解放军92485部队,辽宁 大连 116041
为充分利用光学相关识别系统的空间-频谱带宽,提高光学相关识别系统的速度和精度,提出一种基于多通道联合变换相关器和综合鉴别函数的旋转和缩放不变性目标识别方法,并将峰值位置变化标准差作为识别判据。首先,分析以局域峰值杂波均值为相位优选约束条件时存在的问题,提出新的相位优选约束条件——峰值位置变化值,用于选择一定旋转和缩放范围内目标的公共相位,将公共优选相位用于多通道联合变换相关器并结合综合鉴别函数实现了旋转和缩放不变性识别;然后,分析了当目标缩小或综合鉴别函数集成训练图像数量增加时系统的识别容限;最后,分析了场景图像中背景发生变化时所提方法的适用性。研究结果表明,在设定的图像尺寸和背景复杂度条件下,所提方法能够在9通道并行处理的前提下对目标缩小60%、综合鉴别函数集成9幅图像的旋转和缩放目标进行有效识别,且对像素数变化不超过50%的背景具有较好的适应性,提高了目标识别的速度和精度,对多通道光学相关器的实用化具有重要意义。
信息处理 光学模式识别 多通道联合变换相关器 综合鉴别函数 旋转和缩放不变性识别 
中国激光
2022, 49(13): 1309001
作者单位
摘要
1 海军航空大学航空作战勤务学院, 山东 烟台 264000
2 烟台大学光电信息科学与工程学院, 山东 烟台 264000
3 中国人民解放军32200部队, 辽宁 锦州 121000
为了充分利用光学相关识别系统的空间-频谱带宽,提高光学相关识别技术的并行处理效率和识别准确度,提出了基于功率谱压缩-平移算法的多通道联合变换相关识别方法,该方法将峰值位置变化的标准差作为相关识别的判据。在输入空间光调制器的不同区域加载场景图像和N幅参考图像,然后在图像上分别叠加经迭代算法优化的相位模板,使得场景图像的傅里叶谱和每一幅参考图像的傅里叶谱在频谱面的不同空间区域相干叠加。调节相位优化算法的约束参量,使得每个通道的联合变换功率谱互不干扰,可实现N个通道的并行处理。分析了不同优化相位的傅里叶谱的局域峰值杂波均值和相关输出的峰值位置变化标准差之间的关系,并将其作为相位优选的依据。研究结果表明,在所提实验和数值模拟参数条件下,多通道联合变换相关识别系统可以在不增加经典相关识别系统复杂度的前提下,实现16通道的并行处理,这对光学相关器的实用化具有重要意义。
傅里叶光学 光学模式识别 多通道联合变换相关器 相位优化算法 功率谱压缩-平移 
光学学报
2021, 41(22): 2207001
Author Affiliations
Abstract
State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
In order to improve the morphology of microchannels fabricated by femtosecond laser ablation, the thermal process was introduced into the post-treatment processing. It was found that the thermal process cannot only decrease the roughness but also the width and depth of the microchannel. The change rates of width, depth, and roughness of the microchannel increase with processing temperature. When we prolong the time of constant temperature, the change rate of the width decreases at the beginning, and then it tends to be stable. However, the change rates of depth and roughness increase, and then they tend to be stable. In this Letter, we discuss the reasons of the above phenomena.
140.3390 Laser materials processing 230.7380 Waveguides, channeled 
Chinese Optics Letters
2018, 16(10): 101402
Author Affiliations
Abstract
1 Universitat Rovira i Virgili, Departament Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Campus Sescelades, E-43007 Tarragona, Spain
2 ITMO University, 49 Kronverkskiy pr., 197101 St. Petersburg, Russia
3 Aplicaciones del Láser y Fotónica, University of Salamanca, 37008 Salamanca, Spain
4 Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
5 Department of Physics, KAIST, 291 Daehak-ro, Yuseong-gu, 34141 Daejeon, South Korea
6 Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a, D-12489 Berlin, Germany
Surface channel waveguides (WGs) were fabricated in a monoclinic Tm3+:KLu(WO4)2 crystal by femtosecond direct laser writing (fs-DLW). The WGs consisted of a half-ring cladding with diameters of 50 and 60 μm located just beneath the crystal surface. They were characterized by confocal laser microscopy and μ-Raman spectroscopy, indicating a reduced crystallinity and stress-induced birefringence of the WG cladding. In continuous-wave (CW) mode, under Ti:sapphire laser pumping at 802 nm, the maximum output power reached 171.1 mW at 1847.4 nm, corresponding to a slope efficiency η of 37.8% for the 60 μm diameter WG. The WG propagation loss was 0.7±0.3 dB/cm. The top surface of the WGs was spin-coated by a polymethyl methacrylate film containing randomly oriented (spaghetti-like) arc-discharge single-walled carbon nanotubes serving as a saturable absorber based on evanescent field coupling. Stable passively Q-switched (PQS) operation was achieved. The PQS 60 μm diameter WG laser generated a record output power of 150 mW at 1846.8 nm with η=34.6%. The conversion efficiency with respect to the CW mode was 87.6%. The best pulse characteristics (energy/duration) were 105.6 nJ/98 ns at a repetition rate of 1.42 MHz.
Waveguides, channeled Lasers, Q-switched Laser materials 
Photonics Research
2018, 6(10): 10000971
Author Affiliations
Abstract
1 Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
2 SM Optics s.r.l., Research Programs, Via John Fitzgerald Kennedy 2, 20871 Vimercate, Italy
3 Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
4 Centre for Materials and Microsystems, Fondazione Bruno Kessler, 38123 Trento, Italy
In this work, we report the modeling and the experimental demonstration of intermodal spontaneous as well as stimulated four-wave mixing (FWM) in silicon waveguides. In intermodal FWM, the phase-matching condition is achieved by exploiting the different dispersion profiles of the optical modes in a multimode waveguide. Since both the energy and the wave vectors have to be conserved in the FWM process, this leads to a wide tunability of the generated photon wavelength, allowing us to achieve a large spectral conversion. We measured several waveguides that differ by their widths and demonstrate large signal generation spanning from the pump wavelength (1550 nm) down to 1202 nm. A suited setup evidences that the different waves propagated indeed on different order modes, which supports the modeling. Despite observing a reduced efficiency with respect to intramodal FWM due to the decreased modal overlap, we were able to show a maximum spectral distance between the signal and idler of 979.6 nm with a 1550 nm pump. Our measurements suggest the intermodal FWM is a viable means for large wavelength conversion and heralded photon sources.
Nonlinear optics, four-wave mixing Wavelength conversion devices Waveguides, channeled 
Photonics Research
2018, 6(8): 08000805
Author Affiliations
Abstract
The State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
A fused silica glass micro-channel can be formed by chemical etching after femtosecond laser irradiation, and the successful etching probability is only 48%. In order to improve the micro-channel fabrication success probability, the method of processing a high-temperature lattice by a femtosecond laser pulse train is provided. With the same pulse energy and scanning speed, the success probability can be increased to 98% by optimizing pulse delay. The enhancement is mainly caused by the nanostructure, which changes from a periodic slabs structure to some intensive and loose pore structures. In this Letter, the optimum pulse energy distribution ratio to the etching is also investigated.
140.0140 Lasers and laser optics 230.7380 Waveguides, channeled 
Chinese Optics Letters
2017, 15(7): 071403
Author Affiliations
Abstract
1 Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
2 Department of Ophthalmology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
3 Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
4 School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
5 Departamento Física Aplicada, Facultad Ciencias, Universidad de Salamanca, Salamanca 37008, Spain
This work demonstrates the Nd:YAG waveguide laser as an efficient platform for the bio-sensing of dextrose solutions and tumor cells. The waveguide was fabricated in an Nd:YAG crystal with the cooperation of ultrafast laser writing and ion irradiation. The laser oscillation in the Nd:YAG waveguide is ultrasensitive to the external environment of the waveguide. Even a weak disturbance leads to a large variation of the output power of the laser. According to this feature, an Nd:YAG waveguide coated with graphene and WSe2 layers is used as substrate for the microfluidic channel. When the microflow crosses the Nd:YAG waveguide, the laser oscillation in the waveguide is disturbed and induces fluctuation of the output laser. According to the fluctuation, the microflow is detected with a sensitivity of 10 mW/RIU.
(230.7380) Waveguides channeled (140.0140) Lasers and laser optics (280.3420) Laser sensors. 
Photonics Research
2017, 5(6): 06000728
Author Affiliations
Abstract
College of Information Science and Electronic Engineering, Zhejiang University, HangZhou, 310027, China
We propose and demonstrate an ultrasensitive integrated photonic current sensor that incorporates a silicon-based single-mode-multimode-single-mode waveguide (SMSW) structure. This kind of SMSW structure is placed over a direct current carrying power resistor, which produces Joule’s heat to change the temperature of the SMSW and further results in the change of the effective refractive index between different propagating modes. Interference occurs when the modes recombine at the second single mode waveguide. Finally, the current variation is measured by monitoring the shift in the output spectrum of the multimode interferometer. In low current, the wavelength shift has almost linear dependence: ΔλIc. This effect can be used as a current sensor with a slope efficiency of 4.24 nm/A in the range of 0–200 mA.
130.3120 Integrated optics devices 130.6010 Sensors 230.7380 Waveguides, channeled 
Chinese Optics Letters
2016, 14(3): 031301
Author Affiliations
Abstract
Optical waveguides are fabricated in Nd3+:Y3+:SrF2 crystals by a 1-kHz femtosecond laser using the double-line approach. Waveguides with different separations (10, 15, and 20 \mm m) between two consecutive optical breakdown tracks are produced, and their optical performances are explored by end-fire coupling to 780-and 532-nm lasers. Propagation loss of the waveguide with 20-\mm m separation is estimated. The microphotoluminescence and micro-Raman spectra indicate that the original fluorescence and lattice structure of the Nd3+:Y3+:SrF2 crystals are well preserved in the waveguide. Therefore, the obtained waveguide structures are promising candidate for application in integrated waveguide lasers.
230.7380 Waveguides, channeled 140.7090 Ultrafast lasers 160.3380 Laser materials 
Chinese Optics Letters
2013, 11(11): 112301

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!