Author Affiliations
Abstract
1 The Key Laboratory of Weak-Light Nonlinear, Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, P. R. China
2 State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
4 Shenzhen Research Institute of Nankai University, Shenzhen, Guangdong 518083, P. R. China
Cells are highly sensitive to their geometrical and mechanical microenvironment that directly regulate cell shape, cytoskeleton and organelle, as well as the nucleus morphology and genetic expression. The emerging two-dimensional micropatterning techniques offer powerful tools to construct controllable and well-organized microenvironment for single-cell level investigations with qualitative analysis, cellular standardization, and in vivo environment mimicking. Here, we provide an overview of the basic principle and characteristics of the two most widely-used micropatterning techniques, including photolithographic micropatterning and soft lithography micropatterning. Moreover, we summarize the application of micropatterning technique in controlling cytoskeleton, cell migration, nucleus and gene expression, as well as intercellular communication.
Two-dimensional micropatterning cytoskeleton cell migration extracellular matrix intercellular communication gene expression 
Journal of Innovative Optical Health Sciences
2024, 17(1): 2330011
郭敏 1,2刘享洋 1,2董贤子 1刘洁 1[ ... ]郑美玲 1,*
作者单位
摘要
1 中国科学院理化技术研究所仿生材料与界面科学重点实验室,北京 100190
2 中国科学院大学未来技术学院,北京 101407
生物材料的表面拓扑结构能够显著影响细胞的黏附、增殖、迁移和分化等行为。为有效模拟体内细胞微环境,利用飞秒激光无掩模光学投影光刻技术制备了一系列曲线型拓扑结构。结果表明:细胞在沟槽、折线和三种不同曲率的波浪形拓扑结构上严格按照拓扑结构形貌进行生长、迁移。当波浪形结构曲率过大时,细胞改变原有的迁移方向,产生沿弯曲方向的迁移行为。共聚焦荧光显微图像显示:细胞在折线结构和波浪线结构的拐角区域发生骨架重排,相较于线区域细胞圆度增加。据此提出了细胞在曲线型拓扑结构上的迁移机制。该研究揭示了细胞对曲线型拓扑结构的响应机制,将为体外植入材料的设计提供科学依据。
医用光学 飞秒激光 无掩模光学投影光刻 曲线型拓扑结构 细胞迁移 细胞骨架 
中国激光
2023, 50(15): 1507303
Author Affiliations
Abstract
1 The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071 P. R. China
2 State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan Shanxi 030006, P. R. China
4 Shenzhen Research Institute of Nankai University, Shenzhen, Guangdong 518083, P. R. China
Actin cytoskeleton plays crucial roles in various cellular functions. Extracellular matrix (ECM) can modulate cell morphology by remodeling the internal cytoskeleton. To define how geometry of ECM regulates the organization of actin cytoskeleton, we plated individual NIH 3T3 cells on micropatterned substrates with distinct shapes and sizes. It was found that the stress fibers could form along the nonadhesive edges of T-shaped pattern, but were absent from the opening edge of V-shaped pattern, indicating that the organization of actin cytoskeleton was dependent on the mechanical environment. Furthermore, a secondary actin ring was observed on 50μm circular pattern while did not appear on 30μm and 40μm pattern, showing a size-dependent organization of actin cytoskeleton. Finally, osteoblasts, MDCK and A549 cells exhibited distinct organization of actin cytoskeleton on T-shaped pattern, suggesting a cell-type specificity in arrangement of actin cytoskeleton. Together, our findings brought novel insight into the organization of actin cytoskeleton on micropatterned environments.Actin cytoskeleton plays crucial roles in various cellular functions. Extracellular matrix (ECM) can modulate cell morphology by remodeling the internal cytoskeleton. To define how geometry of ECM regulates the organization of actin cytoskeleton, we plated individual NIH 3T3 cells on micropatterned substrates with distinct shapes and sizes. It was found that the stress fibers could form along the nonadhesive edges of T-shaped pattern, but were absent from the opening edge of V-shaped pattern, indicating that the organization of actin cytoskeleton was dependent on the mechanical environment. Furthermore, a secondary actin ring was observed on 50μm circular pattern while did not appear on 30μm and 40μm pattern, showing a size-dependent organization of actin cytoskeleton. Finally, osteoblasts, MDCK and A549 cells exhibited distinct organization of actin cytoskeleton on T-shaped pattern, suggesting a cell-type specificity in arrangement of actin cytoskeleton. Together, our findings brought novel insight into the organization of actin cytoskeleton on micropatterned environments.
Actin cytoskeleton photolithography micropatterning extracellular matrix 
Journal of Innovative Optical Health Sciences
2023, 16(2): 2244005
作者单位
摘要
1 弱光非线性光子学教育部重点实验室, 南开大学物理科学学院, 泰达应用物理研究院, 天津 300071
2 天津大学精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072
3 药物化学生物学国家重点实验室, 南开大学生命科学学院, 天津 300071
4 极端光学协同创新中心, 山西大学, 山西 太原 030006
21世纪初诞生的超分辨光学成像技术在生命科学研究中发挥着巨大作用,极大地增强了人们探索微纳尺度亚细胞结构的能力,然而这些成像技术往往耗时长,成本高。如今,许多研究者致力于基于深度学习的图像超分辨重建算法的研究中。利用自主搭建的随机光学重构超分辨显微镜获得细胞微管骨架超分辨图像,然后采用双线性插值降采样法处理得到低分辨率输入图集,再分别使用传统的三次样条插值法和增强型深度超分辨率神经网络进行学习训练,实现低分辨率图像的超分辨重建。结果表明:通过深度学习所重建的各种降采样的图像效果均优于采用传统插值法得到的图像效果,尤其是二倍降采样重建图像在主观和客观评价指标上可比拟实验获得的微管骨架超分辨图像。基于增强型深度超分辨率神经网络的细胞骨架图像超分辨重建有望提供一种简捷、有效和高性价比的成像方法,可应用于对细胞骨架超微结构的快速预测。
图像处理 深度学习 图像超分辨重建 随机光学重构显微术 细胞骨架 
光学学报
2020, 40(24): 2410001
作者单位
摘要
清华大学物理系, 原子分子与纳米科学教育部重点实验室, 北京100084
细胞骨架在植物细胞及其运动、 发育变化等过程中起着重要作用。 本文利用MS培养基在无菌条件下培养转染GFP(绿色荧光蛋白)的拟南芥, 使其经过从种子萌发、 植株生长直至开花结果的完整生命周期; 在此过程中, 利用适合对较大较厚样品进行活体四维成像的双光子激光扫描显微术, 观测活的拟南芥种子、 根尖、 导管和根毛等器官内的细胞骨架形态, 以及拟南芥根尖生长发育的动态过程, 量化计算出根尖的生长速度。 用低浓度(10-10mol·L-1)吲哚-3-乙酸刺激拟南芥, 观测到根尖生长速度比正常情况下提高约3.8倍。
双光子成像 拟南芥 GFP转染 细胞骨架 Two-photon laser scanning microscopy(TPLSM) Arabidopsis thaliana GFP-fusion Cytoskeleton 
光谱学与光谱分析
2010, 30(10): 2593
作者单位
摘要
1 汕头大学医学院中心实验室,中国广东,汕头,515031
2 汕头大学医学院生物化学与分子生物学教研室,中国广东,汕头,515031
癌细胞的形态及癌细胞的生物学行为(如粘附、迁移和浸润)与细胞内骨架系统密切相关, 本研究利用Phalloidin-FITC标记人肝癌Bel-7402细胞内F-肌动蛋白(F-actin), 使用激光扫描共聚焦显微镜观测细胞微丝骨架与癌细胞形态的关系, 及Cyt-B处理Bel-7402细胞后,癌细胞内微丝骨架的变化.结果显示:癌细胞内F-actin解聚,F-actin小体的聚集重组是癌细胞的形态变化的主要因素之一.
激光扫描共聚焦显微镜 人肝癌Bel-7402细胞 F-肌动蛋白 微丝骨架 细胞松弛素-B confocal scanning laser microscope (CSLM) human Bel-7402 hepatocarcinomacell F-actin microfilament cytoskeleton cytochalasin-B(Cyt-B) 
激光生物学报
2004, 13(3): 224

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!