Yuxing Han 1,2,3Hongchao Cao 1,3,6Fanyu Kong 1,3,6Yunxia Jin 1,3,4,6,*Jianda Shao 1,3,4,5,6
Author Affiliations
Abstract
1 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
3 Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai, China
4 CAS Center for Excellence in Ultra-Intense Laser Science, Chinese Academy of Sciences, Shanghai, China
5 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
6 China-Russian Belt and Road Joint Laboratory on Laser Science, Shanghai, China
Maximizing the energy-loading performance of gratings is a universal theme in high-energy pulse compression. However, sporadic grating designs strongly restrict the development of high-power laser engineering. This study proposes an all- and mixed-dielectric grating design paradigm for Nd:glass-based pulse compressors. The solution regions are classified according to the line density. High diffraction efficiency solutions are described in more detail based on the dispersion amount and incident angle. Moreover, an energy scaling factor of 7.09 times larger than that of the National Ignition Facility’s Advanced Radiographic Capability (NIF-ARC) is obtained by taking advantage of the low electric field intensity at transverse magnetic polarization and a small incident angle. These results make a pioneering contribution to facilitate future 20–50-petawatt-class ultrafast laser systems.
all-dielectric grating high-peak-power laser large deviation angle Littrow configuration mixed metal-dielectric grating 
High Power Laser Science and Engineering
2023, 11(5): 05000e60
作者单位
摘要
上海理工大学 机械工程学院,上海200093
脉冲压缩光栅是实现高能量激光的核心光学元器件,其制造过程中产生的表面污染物和微结构缺陷成为限制高功率激光系统发展的技术瓶颈,为了提升光栅的激光诱导损伤阈值,提出利用磁性复合流体进行脉冲压缩光栅(PCG)后处理抛光研究。对抛光前后光栅样品的微观结构,表面形貌、表面粗糙度、衍射效率和激光诱导损伤阈值等参数进行测量,进行抛光前后光栅表面质量和光栅性能的评估。研究发现,磁性复合流体抛光能够在不破坏实际光栅结构的前提下抑制加工过程产生的毛刺,微结构缺陷等;经3 min抛光后,光栅顶部表面粗糙度从21.36 nm下降到3.73 nm;激光诱导损伤阈值从2.8 J/cm2提高到3.8 J/cm2,抗激光损伤性能提升35.7%,且不影响衍射效率。实验结果表明:磁性复合流体抛光是一种可以提高光栅元件表面质量,提升光栅元件光学性能的有效方法。
脉冲压缩光栅 多层介质膜光栅 磁性复合流体 激光诱导损伤阈值 表面形貌 pulse compression gratings (PCG) multilayer dielectric grating (MDG) magnetic compound fluid (MCF) laser induced damage threshold (LIDT) surface topography 
光学 精密工程
2023, 31(14): 2071
作者单位
摘要
江苏大学理学院, 江苏 镇江 212013
提出了一种基于梯形介质光栅金属薄膜结构的折射率传感器。利用有限元方法,研究了不同光栅厚度、梯形参数以及不同折射率下待分析液体的反射谱线。对传感器结构参数进行优化,得到了传感器的角灵敏度。考虑由反射谱线共振峰的对称移动导致的角灵敏度加倍效应,当待分析液体折射率从1.33变化到1.34时,传感器角灵敏度可达845.23(°)/RIU(RIU为折射率单位);从1.34变化到1.35时,传感器角灵敏度可达1283.14(°)/RIU,并且该传感器具有更宽折射率范围的检测应用。梯形参数对传感器的角灵敏度起着决定性的作用,具有最大灵敏度的传感器结构能形成对比度最大的电场分布驻波结构。
表面光学 介质光栅 金属薄膜 折射率传感器 加倍效应 驻波结构 
激光与光电子学进展
2019, 56(7): 072401
作者单位
摘要
1 兰州理工大学 理学院, 兰州 730050
2 西北师范大学 物理与电子工程学院, 兰州 730070
理论设计了介质光栅/金属薄膜与银纳米立方体复合结构, 通过有限元方法数值模拟计算了该结构中的超高电场增强因子.使用442 nm波长的激光作为表面等离子体的激发光源, 研究不同尺寸银纳米立方体的消光谱以及不同光栅周期和厚度的反射光谱, 得到的该复合结构的最优参数为: 光栅周期312 nm, 厚度90 nm, 银纳米立方体70 nm.在最优参数条件下, 数值模拟了复合结构中的电场增强分布, 介质光栅/金属薄膜与银纳米立方体复合结构由于存在局域表面等离子体和传播表面等离子体的共振耦合, 使得光栅脊与银纳米立方体下顶点接触处热点的电场增强因子高达1.53×106.该复合结构产生的超高电场增强因子, 有望应用于表面增强拉曼散射的研究.
介质光栅 银立方体 表面等离子体 电场增强 有限元方法 Dielectric grating Silver cube Surface plasmon Electric field enhancement Finite element method 
光子学报
2018, 47(11): 1131001
作者单位
摘要
1 兰州理工大学理学院, 甘肃 兰州 730050
2 兰州城市学院电子与信息工程学院, 甘肃 兰州 730070
设计了一种基于介质光栅金属薄膜复合结构的折射率传感器。利用He-Ne激光器输出的632.8 nm横磁偏振光激发复合结构中的表面等离子体,得到了高灵敏度的折射率传感器。运用有限元方法,数值模拟了具有不同光栅厚度、周期以及折射率的分析物的反射光谱。对占空比为0.5、金属薄膜厚度为45 nm的复合结构进行了参数优化,得到最优参数为:光栅厚度100 nm、光栅周期500 nm。在最优参数条件下,计算了金属薄膜与具有不同折射率的分析物之间的界面共振角的变化,得到了高达500 (°)/RIU的角灵敏度。该折射率传感器操作简单、成本低、角灵敏度高,具有很好的应用前景。
表面光学 介质光栅/金属薄膜 表面等离子体 折射率 
光学学报
2017, 37(11): 1124001
作者单位
摘要
1 清华大学 精密仪器系 精密测试技术及仪器国家重点实验室, 北京 100084
2 中国工程物理研究院 应用电子学研究所, 四川 绵阳 621900
介绍了一种应用于光纤激光光谱合束的高衍射效率多层介质膜偏振无关光栅的设计及制作,给出了设计参数、制作流程和最终制作的偏振无关光栅的测量结果,在1.044~1.084 μm波长范围内,实验测得的TE偏振光、TM偏振光的平均衍射效率分别为89.7%,93.8%。
衍射光栅 偏振无关光栅 多层介质膜光栅 光谱合束 diffraction grating polarization independent grating multilayer dielectric grating spectral beam combining 
强激光与粒子束
2015, 27(11): 111013
马毅 1,2,*颜宏 1,2田飞 1,2孙殷宏 1,2[ ... ]高清松 1,2
作者单位
摘要
1 中国工程物理研究院 应用电子学研究所, 四川 绵阳 621900
2 中国工程物理研究院 高能激光科学与技术重点实验室, 四川 绵阳 621900
3 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
4 北京应用物理与计算数学研究所, 北京 100088
5 清华大学 工程物理系, 北京 100084
采用多层介质膜衍射光栅实现多路高功率光纤激光共孔径光谱合成有望成为光纤激光同时实现高功率、高效率和高光束质量的最具发展潜力的技术途径。搭建了一套基于双光栅色散补偿设计的5 kW共孔径光谱合成系统。采用国产多层介质膜衍射光栅实现了5路kW级窄谱子束激光的高效优质共孔径光谱合成,最大输出功率达5.07 kW,光束质量因子(M2)小于3,合成效率达到91.2%。初步研究表明: 多层介质膜衍射光栅在较高功率水平、较宽光谱范围内均能保持较高衍射效率,是实现高功率光纤激光高效率光谱合成的重要器件; 参与合成的子束自身的光束质量水平和线宽是影响合成输出光束质量的重要因素,光谱合成系统的输出功率主要受限于窄谱子束的输出功率和合成路数,增加窄谱子束的功率或合成路数均可进一步提升系统的输出功率。
光纤激光 多层介质膜光栅 共孔径 光谱合成 fiber laser multi-layer dielectric grating common aperture spectral beam combining 
强激光与粒子束
2015, 27(4): 040101
作者单位
摘要
中国科学技术大学 国家同步辐射实验室,安徽 合肥 230029
总结了大尺寸衍射光学元件离子束刻蚀技术的研究进展。针对自行研制的KZ-400离子束刻蚀装置,提出了组合石墨束阑结构和多位置分步刻蚀策略来提高离子束刻蚀深度的均匀性,目前在450 mm尺寸内的刻蚀深度均匀性最高可达±1%。建立了针对多层介质膜光栅的衍射强度一维空间分布在线检测系统以及用于透射衍射光学元件离子束刻蚀深度的等厚干涉在线检测系统,实现了对大尺寸衍射光学元件离子束刻蚀终点的定量、科学控制,提高了元件离子束刻蚀工艺的成功率。利用上述技术,成功研制出一系列尺寸的多层介质膜光栅、光束采样光栅、色分离光栅以及同步辐射光栅等多种衍射光学元件。
衍射光学元件 离子束刻蚀 刻蚀深度 在线检测 多层介质膜光栅 Diffractive Optical Elements(DOE) ion beam etching etching depth on-line measurement Multilayer Dielectric Grating(MDG) 
光学 精密工程
2012, 20(8): 1676
作者单位
摘要
青岛大学物理科学学院, 山东 青岛 266071
基于飞秒激光对脉宽压缩光栅宽光谱和高衍射效率的要求,提出了一种金属介质膜结构的宽光谱高衍射效率脉宽压缩光栅,该光栅由基底、金属介质膜和表面浮雕结构组成。为获得宽光谱高衍射效率的脉宽压缩光栅,采用严格耦合波理论对金属介质膜光栅的结构参数进行优化设计。数值分析表明当金属介质光栅的槽深、剩余厚度、占空比和入射角分别为272 nm,10 nm,0.23和54°时,对于中心波长为800 nm的TE波,其-1级衍射效率在732~886 nm内优于97%,有效工作带宽达150 nm。
衍射 宽光谱 严格耦合波理论 金属介质膜光栅 
光学学报
2011, 31(10): 1005001
作者单位
摘要
1 中国工程物理研究院上海激光等离子体研究所, 上海 201800
2 中国科学院上海光学精密机械研究所, 上海 201800
拼接光栅技术是提高高功率激光器输出能量的一条可能途径,为保障高功率激光器光束时空光束质量,拼接光栅角度误差必须小于0.4 μrad,位移偏差小于20 nm。为了满足光栅拼接调整系统的高精度高稳定性要求,设计了光栅拼接旋转角度偏差检测方案用于测量两块相邻光栅之间的相对空间姿态。测量系统测量光束与压缩器主光束同轴,利用相移式干涉仪测量待测光,得到若干干涉图样,通过快速傅里叶变换还原波前得到相邻两块光栅相对空间角度偏差。通过实验验证了检测系统的理论可行性,目前在小口径光束下精度达到0.45 μrad。测量方案结合拼接光栅只需要测量波面倾斜误差的要求,简化了干涉测量光路及图像分析流程,有利于光栅拼接技术的工程化应用。
光栅 介质膜光栅 拼接误差 检测系统 快速傅里叶变换 
中国激光
2011, 38(3): 0308001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!