作者单位
摘要
西安电子科技大学 物理与光电工程学院, 陕西 西安 710071
金属丝电爆炸是获取金属纳米级粉粒的有效途径, 电爆炸的演绎过程直接影响金属粉颗粒的尺度范围。采用纳秒级脉冲激光对爆炸过程的瞬态进行观察, 以激光干涉条纹为背景, 依据电爆炸过程中, 对条纹的扰动获取具有清晰边缘的爆炸区图像; 再根据激光穿过爆炸云团的透过率计算出不同时刻粉尘体浓度的三维分布图。测量结果表明: 通电后0.5 μs, 金属丝直径由03 mm扩展为4.7 mm,直到18 μs时扩展为28 mm, 而粒子的最大浓度由3×1021/cm3 减小为1.1×1020/cm3。整个扩展过程中, 粒子浓度沿径向呈现多个环带的分布形态。
电爆炸 等离子体 激光干涉 纳米铝粉浓度 三维分布 electric explosion plasma laser interference nano-aluminum powder concentration 3D distribution 
应用光学
2019, 40(6): 1109
作者单位
摘要
1 四川大学 电子信息学院, 成都 610065
2 华北光电技术研究所, 北京 100015
设计并搭建了基于高压放电方式的金属丝电爆炸制备纳米粉体的实验装置,并配备了电流电压测量辅助系统,可以方便地制备纳米颗粒,实时记录电爆炸过程中的电流和电压。对Zr丝进行电爆炸实验;理论上分析了Zr丝在电爆炸过程中的沉积能量以及物态的变化过程。研究了充电电压对沉积能量和纳米粉体特性的影响规律。通过元素能谱(EDS)和X射线衍射仪(XRD)对制备的纳米粉体做了成分分析。采用透射电子显微镜(TEM)观察纳米粉体的形貌和结构,并用电镜统计观察法得到纳米粉体的粒度分布。研究结果表明:电压的增大,会使沉积能量增加,并缩短锆丝完全汽化所需时间。增大充电电压可显著缩小纳米粉体的粒径分布范围,并得到更小平均粒径的颗粒。电爆炸锆丝的产物是ZrO2纳米颗粒,其晶相结构为单斜晶系(m-ZrO2)和立方晶系(c-ZrO2),并且颗粒呈良好的球形,表面光滑,轮廓清晰,粒径分布主要集中在10 nm到40 nm之间。
电爆炸 沉积能量 纳米粉体 粒径分布 electric explosion ZrO2 ZrO2 deposited energy nanopowders particle size distribution 
强激光与粒子束
2018, 30(7): 074103
作者单位
摘要
1 攀枝花学院 数学与计算机学院, 四川 攀枝花 617000
2 四川大学 电子信息学院, 成都 610065
采用电爆炸法制造纳米金属颗粒。分析了铜丝在电爆炸过程中的物态变化,即从固态、液态、气态到离子态;同时理论研究了纳米铜粉粒径大小及分布、成分组成与爆炸时的能量、铜丝的直径和铜丝长度的关系;定义了粒径均匀度,通过粒径平均大小和粒径均匀度比较,分析了纳米粒径的大小分布情况;通过X射线衍射仪(XRD),透射电子显微镜(TEM)对电爆炸制造出的纳米铜颗粒做了测定与定量分析。结果表明:铜粉的主要成分由氧化铜、氧化亚铜及单晶铜组成,各成分所占比例与爆炸缸内的真空度相关。纳米金属微粒的粒径平均值、粒径均匀度与铜丝长度、直径、充电电压、放电时间等因素相关。
电爆炸 铜丝 纳米粉 物相分析 electric explosion copper nanometer powder phase analysis 
强激光与粒子束
2013, 25(9): 2408

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!