作者单位
摘要
1 兰州理工大学 电气工程与信息工程学院,兰州 730050
2 兰州理工大学 材料科学与工程学院,兰州 730050
在丝电爆过程中,金属丝的沉积能量是决定爆炸效果的关键参数。在研发连续送丝电爆装置的基础上,提出带载丝电爆炸提高金属丝沉积能量的方法。根据金属丝在电爆过程中的相变理论及旁路并联电阻的非线性时变性,建立了金属丝负载的电阻-能量分段模型。使用带载丝和裸丝分别开展电爆炸实验,同步采集丝电爆过程中的放电波形并分析计算,探究带载丝电爆炸相关机理以及沉积能量的变化规律。结果表明,电爆炸前期,由于载丝带具有绝缘性,其旁路并联电阻大于裸丝,从而使得带载丝电阻大于裸丝;随着欧姆加热的进行,带载丝中液态金属沿轴向由两端向中间聚集,加快了电爆炸相变过程,等效电阻减小,延缓了沿面击穿过程,从而获得更多的能量。
连续丝电爆 带载丝 沉积能量 电阻-能量分段模型 沿面击穿 continuous wire electrical explosion carrier wire energy deposition resistance-energy segmentation model breakdown along the surface 
强激光与粒子束
2023, 35(6): 065001
作者单位
摘要
大连理工大学 电气工程学院,辽宁 大连 116024
水中脉冲放电过程较为复杂,放电参数与放电沉积能量之间没有明确的函数关系。为了获得最佳沉积能量,明晰不同放电参数相互作用对沉积能量的影响,获得最佳放电参数组合,本文搭建了水中高压脉冲放电实验平台,结合Kriging代理模型探究了电压、电极间距和电导率三种放电参数对水中放电沉积能量的影响;利用遗传算法进行全局寻优,确定了最佳放电参数组合。研究结果表明:通过交叉验证评估该模型的均方根误差为6.95%,满足精度要求;外加电压一定时,在电极间距和电导率的协同作用下,沉积能量的变化呈现多峰值特性;在电压、电极间距和电导率分别为17 kV、2.28 mm和0.8 mS/cm的条件下产生的沉积能量最大,为最佳参数组合;通过实验验证了在最佳点的预测值和实际值相对偏差在8%以内。
水中放电 代理模型 沉积能量 放电参数 交叉验证 discharge in water surrogate model deposited energy discharge parameters cross validation 
强激光与粒子束
2023, 35(3): 035005
作者单位
摘要
1 四川大学 电子信息学院, 成都 610065
2 华北光电技术研究所, 北京 100015
设计并搭建了基于高压放电方式的金属丝电爆炸制备纳米粉体的实验装置,并配备了电流电压测量辅助系统,可以方便地制备纳米颗粒,实时记录电爆炸过程中的电流和电压。对Zr丝进行电爆炸实验;理论上分析了Zr丝在电爆炸过程中的沉积能量以及物态的变化过程。研究了充电电压对沉积能量和纳米粉体特性的影响规律。通过元素能谱(EDS)和X射线衍射仪(XRD)对制备的纳米粉体做了成分分析。采用透射电子显微镜(TEM)观察纳米粉体的形貌和结构,并用电镜统计观察法得到纳米粉体的粒度分布。研究结果表明:电压的增大,会使沉积能量增加,并缩短锆丝完全汽化所需时间。增大充电电压可显著缩小纳米粉体的粒径分布范围,并得到更小平均粒径的颗粒。电爆炸锆丝的产物是ZrO2纳米颗粒,其晶相结构为单斜晶系(m-ZrO2)和立方晶系(c-ZrO2),并且颗粒呈良好的球形,表面光滑,轮廓清晰,粒径分布主要集中在10 nm到40 nm之间。
电爆炸 沉积能量 纳米粉体 粒径分布 electric explosion ZrO2 ZrO2 deposited energy nanopowders particle size distribution 
强激光与粒子束
2018, 30(7): 074103
作者单位
摘要
1 国网四川省电力公司 电力科学研究院, 成都 610072
2 西安交通大学 电气工程学院, 西安 710049
3 国网四川省电力公司 检修公司, 成都 610042
研制了基于脉冲电容器放电回路的亚微秒金属丝电爆炸纳米粉体制备实验平台, 包括电爆炸过程电流和电压测量系统。利用透射电子显微镜(TEM)观察纳米粉体的形态与结构, 并通过电镜统计观察法分析TEM图像得到纳米粉体的粒度大小及其分布。在氩气中电爆炸铝丝制备铝纳米粉体, 通过改变电容器充电电压, 即初始储能, 实验研究沉积能量对铝纳米粉体特性的影响规律。结果表明: 铝纳米粉体颗粒形态与结构主要由氩气气压的高低决定, 与沉积能量基本无关。增大丝爆过程的沉积能量可显著缩小铝纳米粉体粒度分布范围, 减小颗粒平均粒径, 并有效地抑制纳米粉体中亚微米颗粒的形成。随着沉积能量E与氩气气压p比值(Ep-1)增大, 铝纳米粉体颗粒平均粒径、最大粒径和粒径大于100 nm颗粒所占比例均呈指数函数单调减小。
金属丝电爆炸 铝纳米粉体 沉积能量 颗粒形态 粒度分布 electrical explosion of wire aluminum nanopowders deposited energy particle morphology particle size distribution 
强激光与粒子束
2016, 28(10): 105006
作者单位
摘要
1 四川大学 电子信息学院, 激光微纳工程研究所, 成都610065
2 华北光电技术研究所, 北京 100015
搭建了电爆炸金属丝实验平台,在空气中电爆炸铁丝来制备纳米金属颗粒。利用电阻分压器与Rogowski线圈来测量电爆炸过程中铁丝上的负载电压与电流。将负载电压与电流之积进行时间积分来估算沉积在铁丝上的能量。使用光电探测器对电爆炸过程中产生的等离子体发光信号进行探测。对铁丝电爆炸后形成的产物使用高倍显微镜、扫描电镜(SEM)、透射电镜(TEM)、能谱分析仪(EDS)以及X射线衍射仪(XRD)进行观测,来研究其物相特性。实验结果表明:电爆炸过程中,当铁丝由液相变为气相时,其电阻急剧增加,因此电流几乎不能流过铁丝,同时铁丝上的负载电压会趋近于电容器的初始充电电压。随着能量的持续积累,等离子体在爆炸腔中形成。由于原本被阻断的电流能够从低电阻等离子体中流过,因此电压电流波形变为欠阻尼波形。电爆炸铁丝所得的产物为Fe3O4纳米颗粒,其中大部分呈规则的球形。Fe3O4纳米颗粒的粒径主要分布在30~60 nm之间,并且符合对数正态分布。
电爆炸金属丝 沉积能量 纳米颗粒 物相研究 electrical explosion of wire deposited energy Fe3O4 Fe3O4 nanoparticles phase analysis 
强激光与粒子束
2016, 28(8): 28084101

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!