作者单位
摘要
南京林业大学轻工与食品学院, 江苏 南京 210037
木质素降解是生物质资源化利用的一个重要方式, 木质素本身是通过醚键或碳碳键连接的三维网状大分子结构, 其官能团众多冗杂。 当使用不同方法降解木质素时, 检测降解木质素中酚羟基的含量可以直观地展现此方法对其降解的效率, 并且能够反映木质素中的特定结构以及可水解、 氧化与还原的活性等。 提出并优化一种可以高效快速确定降解木质素中酚羟基浓度的测量方法, 对解析解聚后木质素小分子的结构与功能很关键。 根据对测试所用仪器的分类, 综述了近年来利用滴定、 紫外可见光度(差示紫外分光光度和Folin-Ciocalteu试剂等)、 高效液相色谱、 核磁共振(磷谱、 碳谱、 氢谱和氟谱等)、 气相色谱-质谱以及气相色谱(氨解法测量1-乙酰吡咯烷、 高碘酸盐氧化法测量甲醇)等木质素降解后酚羟基的检测方法与其实验或操作条件, 并对每个定量分析方法的适用条件、 样品要求和关键因素等进行解析, 在基于高效、 便捷、 经济检测酚羟基的方法的前提下, 展望了未来的发展方向。
木质素降解 酚羟基 定量检测 紫外可见光度 核磁共振 Lignin degradation Phenolic hydroxyl group Quantitative detection Ultraviolet-visible spectrophotometry Nuclear magnetic resonance 
光谱学与光谱分析
2022, 42(9): 2666
作者单位
摘要
中天科技精密材料有限公司,江苏 南通 226009
为了研究G.657.B3光纤的折射率剖面结构对光学性能的影响,通过设计凹陷沟槽结构的折射率剖面和相应剖面参数(ba值、c、Δnc-和Δn+),并以适宜的气相轴向沉积(VAD)法工艺、熔融技术以及拉丝条件改善光纤的弯曲损耗,满足光纤传输所需的截止波长、模场直径和低水峰的要求。将工艺优化后所制备的光纤预制棒进行拉丝与测试,结果表明:光纤在1383 nm波长处水峰值降低至0.278 dB/km;在1550 nm、1625 nm波长处,弯曲半径为5 mm绕1圈时的宏弯典型值分别是0.081 dB、0.188 dB,完全满足ITU-T G.657.B3的指标需求。
气相轴向沉积法 光纤 折射率剖面 弯曲损耗 截止波长 羟基(OH-) 高斯分布 vapor phase axial deposition process optical fiber refractive index profile bending loss cut-off wavelength hydroxyl group(OH-) Gaussian distribution 
光通信技术
2021, 47(6): 43
作者单位
摘要
1 中国科学院上海光学精密机械研究所高功率激光单元技术研发中心, 上海201800
2 中国科学院大学, 北京100049
重金属氧化物玻璃中—OH的存在对玻璃光学性质产生干扰影响,使玻璃在中红外波段产生较大损耗。玻璃除水是制作中红外玻璃的关键环节。讨论了羟基对重金属氧化物玻璃的光学、光谱学及光纤性质的影响,总结了近年来出现的中红外重金属氧化物玻璃除水方法(反应气氛除水法、鼓泡法、引入氟化物、氯化物除水等),对比分析了不同方法的除水效果和研究进展,对今后中红外重金属氧化物玻璃除水技术的现状与发展趋势进行了概括。
材料 中红外重金属氧化物玻璃 羟基影响 低羟基含量 除水工艺 
激光与光电子学进展
2014, 51(9): 090002
刘华松 1,2,*季一勤 1,2,3张锋 1刘丹丹 1[ ... ]程鑫彬 3
作者单位
摘要
1 中国航天科工飞航技术研究院天津津航技术物理研究所天津市薄膜光学重点实验室, 天津 300192
2 哈尔滨工业大学光电子技术研究所, 黑龙江 哈尔滨 150080
3 同济大学物理科学与工程学院精密光学工程技术研究所, 上海 200092
基于金属氧化物薄膜材料在中波红外波段应用的需求,研究了含水状态的TiO2、HfO2、Ta2O5和Y2O34种金属氧化物薄膜在中波红外波段内(2.5~5 μm)光学常数的色散特性。利用电子束蒸发沉积技术,在超光滑的硅表面制备了4种氧化物薄膜,基于洛仑兹振子介电常数色散模型,通过透射率光谱反演计算了4种氧化物薄膜的光学常数。研究结果表明:4种氧化物均有少量的水分子、羟基,水含量从少到多的薄膜依次为TiO2、HfO2、Ta2O5和Y2O3,在远离水吸收的位置,消光系数从小到大的薄膜分别为TiO2、HfO2、Ta2O5和Y2O3;在电子束蒸发沉积工艺条件下,为了降低水的影响,TiO2和HfO2是中红外波段较为理想的金属氧化物薄膜材料。
材料 金属氧化物薄膜 水分子 羟基 洛仑兹振子模型 光学常数 
光学学报
2014, 34(8): 0831003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!