刘铭 1,*游聪娅 1李景峰 1常发冉 2[ ... ]王国伟 2,**
作者单位
摘要
1 华北光电技术研究所,北京 100015
2 中国科学院半导体研究所 半导体超晶格国家重点实验室,北京 100083
报道了长/长波双色二类超晶格红外焦平面探测器组件的研制。通过能带结构设计和分子束外延技术,获得了表面质量良好的长/长波双色超晶格外延材料。突破了长波超晶格低暗电流钝化、低损伤干法刻蚀等关键技术,制备出像元中心距30 μm的320×256长/长波双色InAs/GaSb超晶格焦平面探测器芯片。将芯片与双色读出电路互连,采用杜瓦封装,与制冷机耦合形成探测器组件。组件双波段50%后截止波长分别为7.7 μm(波段1)和10.0 μm(波段2)。波段1平均峰值探测率达到8.21×1010 cmW-1Hz1/2NETD实现28.8 mK;波段2平均峰值探测率达到6.15×1010 cmW-1Hz1/2NETD为37.8 mK,获得了清晰的成像效果,实现长/长波双色探测。
二类超晶格 长/长波 双色 焦平面阵列 type-II superlattice long-/long-wavelength dual-band focal plane array 
红外与毫米波学报
2023, 42(5): 574
作者单位
摘要
昆明物理研究所,云南 昆明 650223
昆明物理研究所多年来持续开展了对Au掺杂碲镉汞材料、器件结构设计、可重复的工艺开发等研究,突破了Au掺杂碲镉汞材料电学可控掺杂、器件暗电流控制等关键技术,将n-on-p型碲镉汞长波器件品质因子(R0A)从31.3 Ω·cm2提升到了363 Ω·cm2λcutoff=10.5 μm@80 K),器件暗电流较本征汞空位n-on-p型器件降低了一个数量级以上。研制的非本征Au掺杂长波探测器经历了超过7年的时间贮存,性能无明显变化,显示了良好的长期稳定性。基于Au掺杂碲镉汞探测器技术,昆明物理研究所实现了256×256 (30 μm pitch)、640×512 (25 μm pitch)、640×512 (15 μm pitch)、1024×768 (10 μm pitch)等规格的长波探测器研制和批量能力,实现了非本征Au掺杂长波碲镉汞器件系列化发展。
Au掺杂 暗电流 长波红外 碲镉汞(HgCdTe) 焦平面 Au-doped dark current long wavelength IR (LWIR) HgCdTe focal plane arrays (FPAs) 
红外与激光工程
2023, 52(4): 20220655
Author Affiliations
Abstract
1 The Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
We report on a long wavelength interband cascade photodetector with type II InAs/GaSb superlattice absorber. The device is a three-stage interband cascade structure. At 77 K, the 50% cutoff wavelength of the detector is 8.48 μm and the peak photoresponse wavelength is 7.78 μm. The peak responsivity is 0.93 A/W and the detectivity D* is 1.12 × 1011 cm·Hz0.5/W for 7.78 μm at –0.20 V. The detector can operate up to about 260 K. At 260 K, the 50% cutoff wavelength is 11.52 μm, the peak responsivity is 0.78 A/W and the D* is 5.02 × 108 cm·Hz0.5/W for the peak wavelength of 10.39 μm at –2.75 V. The dark current of the device is dominated by the diffusion current under both a small bias voltage of –0.2 V and a large one of –2.75 V for the temperature range of 120 to 260 K.We report on a long wavelength interband cascade photodetector with type II InAs/GaSb superlattice absorber. The device is a three-stage interband cascade structure. At 77 K, the 50% cutoff wavelength of the detector is 8.48 μm and the peak photoresponse wavelength is 7.78 μm. The peak responsivity is 0.93 A/W and the detectivity D* is 1.12 × 1011 cm·Hz0.5/W for 7.78 μm at –0.20 V. The detector can operate up to about 260 K. At 260 K, the 50% cutoff wavelength is 11.52 μm, the peak responsivity is 0.78 A/W and the D* is 5.02 × 108 cm·Hz0.5/W for the peak wavelength of 10.39 μm at –2.75 V. The dark current of the device is dominated by the diffusion current under both a small bias voltage of –0.2 V and a large one of –2.75 V for the temperature range of 120 to 260 K.
interband cascade infrared photodetector type II superlattices long wavelength 
Journal of Semiconductors
2023, 44(4): 042301
崔玉容 1,2周易 1,2,3,*黄敏 1王芳芳 1[ ... ]何力 1
作者单位
摘要
1 中国科学院上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083
2 中国科学院大学,北京 100049
3 中国科学院大学杭州高等研究院,浙江 杭州 310024
本文开展了InAs / GaSb II类超晶格长波红外探测器的表面处理研究。通过对不同处理工艺形成台面器件的暗电流分析,发现N2O等离子处理结合快速热退火(RTA)的优化工艺能够显著改善长波器件电学性能。对于50%截止波长12.3μm的长波器件,在液氮温度,-0.05V偏置下,表面处理后暗电流密度从5.88 ×10-1 A/cm2降低至4.09 ×10-2 A/cm2,零偏下表面电阻率从17.7 Ωcm提高至284.4 Ωcm,有效降低侧壁漏电流。但是该表面处理后的器件在大反偏压下仍有较大的侧壁漏电,这可能是由于高浓度的表面电荷使得大反偏下侧壁存在较高的隧穿电流。通过栅控结构器件的变栅压实验,验证了长波器件存在纯并联电阻及表面隧穿两种主要漏电机制。最后,对表面处理前后的暗电流进行拟合,处理后器件表面电荷浓度为3.72×1011 cm-2
二类超晶格 长波红外探测器 表面处理 暗电流分析 栅控结构 Type-II superlattice long wavelength photodetectors surface treatment dark current analysis gate-control structure 
红外与毫米波学报
2023, 42(1): 8
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, Bimberg中德绿色光子学研究中心,吉林长春 130033
2 中国科学院长春光学精密机械与物理研究所, 发光学及应用国家重点实验室, 吉林长春 130033
3 柏林工业大学, 固体物理研究所, 纳米光学中心, 德国柏林 D-10623
高速垂直腔面发射激光器(VCSEL)是高速光通信的主要光源之一,受数据流量的迅速增长牵引,高速VCSEL正向更大带宽、更高速率方向发展。长春光机所团队通过优化VCSEL外延设计和生长、器件设计和制备、以及性能表征技术,在多个波长的高速VCSEL的调制带宽、传输速率、模式、功耗等性能方面取得了显著进展。实现高速单模940 nm VCSEL 27.65 GHz调制带宽和53 Gbit/s传输速率;通过波分复用基于850 nm、880 nm、910 nm和940 nm高速VCSEL实现200 Gbit/s链路方案;通过光子寿命优化,实现高速VCSEL低至100 fJ/bit的超低能耗;实现1030 nm高速VCSEL 25 GHz调制带宽;实现1550 nm 高速VCSEL 37 Gbit/s传输速率。研制的高速VCSEL在光通信等领域有重要应用前景。
垂直腔面发射激光器 高速调制 单模 低功耗 波分复用 长波长 光通信 vertical-cavity surface-emitting laser high-speed modulation single-mode low-energy consumption wavelength division multiplex long-wavelength optical communication 
中国光学
2022, 15(5): 946
作者单位
摘要
中国计量大学 光学与电子科技学院,浙江 杭州 310018
当前白光LED主要通过采用蓝光芯片激发黄色发光YAG∶Ce3+来实现,由于光谱中缺少足够的红光成分,光源通常存在显色性能较差的问题。因此,长波荧光材料(> 600 nm)的应用对于高品质白光LED照明的实现尤为重要。为了进一步掌握配位结构对Ce3+能带/电子结构的影响规律,指导Ce3+离子掺杂长波荧光材料的设计研发,本文通过第一性原理计算,利用广义梯度近似(GGA)中密度泛函理论(DFT)深入研究了Y‐Si‐N‐O体系荧光材料Y2Si3N4O3∶Ce3+、Y4Si2N2O7∶Ce3+和Y3Si5N9O∶Ce3+的晶体及能带/电子结构特性,并结合实验测试结果对晶体及能带/电子结构与Ce3+发光特性之间的内在关系进行分析。研究结果表明,针对Ce3+离子掺杂长波荧光材料的设计研发,可以重点对具有高含N量、短Ce—N配位键、低对称性配位结构特性的氧氮化物材料进行筛选。
LED照明显示 Ce3+离子长波长发光 第一性原理计算 晶体结构 能带/电子结构 LED lighting Ce3+ long-wavelength emission first-principles calculation crystal structure band/electronic structures 
发光学报
2022, 43(7): 1061
作者单位
摘要
华北光电技术研究所, 北京100015
随着红外技术的进步, 红外探测器组件向着更小尺寸、更高分辨率的方向发展。小像元间距、大面阵规格是长波探测器发展的重要方向。通过对10 m 像元间距、9 m截止波长、1280×1024阵列规格长波探测器的研究, 突破了10 m间距长波像元成结技术、10 m像元间距铟柱制备及互连技术, 制备了有效像元率大于等于994%、非均匀性小于等于4%的10 m间距长波1280×1024碲镉汞探测器芯片。
小间距 长波 碲镉汞 small pitch 1280×1024 1280×1024 long-wavelength mercury cadmium telluride 
红外
2022, 43(2): 1
作者单位
摘要
华北光电技术研究所,北京100015
InAs/GaSb II类超晶格材料是第三代红外焦平面探测器的优选材料。报道了一种面阵规模为320×256、像元中心距为30 m的InAs/GaSb II类超晶格长波红外焦平面器件。在77 K时,该器件的平均峰值探测率为7.6×1010 cm?Hz1/2?W-1,盲元率为1.46%,响应非均匀性为7.55%,噪声等效温差(Noise Equivalent Temperature Difference, NETD)为25.5 mK。经计算可知,这种器件的峰值量子效率为26.2%,50%截止波长为9.1 m。最后对该器件进行了成像演示。结果表明,该研究为后续的相关器件研制奠定了基础。
InAs/GaSb II类超晶格 长波红外 焦平面阵列 InAs/GaSb type-II superlattice long-wavelength infrared focal plane array 
红外
2021, 42(5): 1
作者单位
摘要
中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083
长波红外偏振探测器能够大幅提升对热成像目标的识别能力。受制于衍射极限的物理限制,目前的微线栅偏振片型长波红外偏振探测器的偏振消光比基本上只能做到最高10∶1左右。文中采用金属/介质/金属的等离激元微腔结构,将量子阱红外探测激活层相嵌在微腔之中。由于上、下金属之间的近场耦合形成了在双层金属区域的横向法布里-珀罗共振模式,构成等离激元微腔。文中利用微腔的模式选择特性及其与量子阱子带间跃迁的共振耦合,将量子阱子带跃迁不能直接吸收的垂直入射光耦合进入等离激元微腔并转变为横向传播,从而能够被量子阱子带吸收,实现了在长波红外13.5 μm探测波长附近偏振消光比大于100∶1的结果。相关工作为发展我国高消光比长波红外偏振成像焦平面提供了全新的物理基础和技术路径。
等离激元 微腔 长波红外 量子阱红外探测器 偏振 消光比 plasmonic microcavity long wavelength infrared quantum well infrared photodetectors polarization extinction ratio 
红外与激光工程
2021, 50(1): 20211006
梁松 1,2,3
作者单位
摘要
1 中国科学院半导体研究所 半导体材料重点实验室, 北京00083
2 中国科学院大学 材料科学与光电工程中心, 北京100049
3 北京低维材料与器件重点实验室, 北京10008
晶体管激光器同时具有激光器的光发射功能与晶体管的电流控制功能,表现出多种新颖的光电特性.相对于短波长GaAs基器件,InP基长波长晶体管激光器更适合于光纤通信系统应用因而具有重要研究价值.本文主要介绍发光波长在1.3 μm与1.5 μm的InP基长波长晶体管激光器的研究进展,对不同结构器件的特点及可用于提高器件性能的相关器件设计进行了分析和讨论.根据器件波导结构的不同目前已报道的边发射晶体管激光器主要包括浅脊、掩埋及深脊结构三种类型.浅脊晶体管激光器中有源量子阱材料被置于重掺杂基区材料之中,使得InP基晶体管激光器只能在低温工作.掩埋结构的InP基晶体管激光器采用npnp型InP电流阻挡层掩埋脊条型有源材料,制作工艺过于复杂,不利于降低器件成本.深脊晶体管激光器中量子阱有源区材料位于重掺杂基区材料之上,可同时减小掺杂杂质扩散及基区材料光吸收的不利影响,基于该结构实现了InP基1.5 μm波段晶体管激光器室温连续电流工作.数值计算研究表明,在深脊晶体管激光器量子阱中进行n型掺杂及在其发射极波导中引入由反向pn结构成的电流限制通道均可以减少载流子向缺陷的扩散,进而减小缺陷的不利影响,提高器件性能.
光电子学 光电子集成 半导体激光器 InP 长波长 Optoelectronics Optoelectronic integration Semiconductor laser InP Long wavelength 
光子学报
2020, 49(11): 116

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!