王振宇 1,2付秀华 1,2,*林兆文 2,3黄健山 3[ ... ]王奔 2,3
作者单位
摘要
1 长春理工大学 光电工程学院, 吉林长春 130022
2 长春理工大学中山研究院, 广东中山 528437
3 中山吉联光电科技有限公司, 广东中山 528437
随着星间通信系统的迅速发展,数据传输的精度要求不断提高。分光镜作为系统的核心元件,其光谱特性和面形精度直接影响整个系统的传输精度。本文基于薄膜干涉理论,选取Ta2O5与SiO2作为高低折射率膜层材料进行膜系设计,采用电子束蒸发的方式在石英基板上制备高精度分光镜。同时根据膜层应力补偿原理建立面形修正模型,修正分光镜面形。光谱分析仪检测结果显示,分光镜在入射角度为21.5°~23.5°内,1563 nm透过率大于98%,1540 nm反射率大于99%。激光干涉仪检测结果显示,分光镜反射面形精度RMS由λ/10修正至λ/90(λ=632.8 nm),透过面形精度RMS为λ/90。
星间通信 分光镜 应力补偿 面形精度 inter-satellite communication beam splitter stress compensation surface accuracy 
中国光学
2024, 17(2): 334
作者单位
摘要
长光卫星技术股份有限公司,吉林 长春 130033
为解决传统柔性支撑中小口径空间反射镜组件热稳定性与结构刚度间的矛盾,提出了一种新型刚性支撑结构,并为某高分辨率空间相机研制了通光口径?214 mm的高精度次镜组件。采用“镜体-锥套-支撑筒-刚性基板”组合,通过延长、优化热应力在组件内部的传递路径实现了消热目的。刚性支撑次镜组件重2.6 kg、4 ℃均匀温升工况下面形变化均方根(RMS)仿真值为2.573 nm,装调重力工况下镜体倾角和位移分别为2.028″、0.566 μm,与传统柔性支撑方案相比具有突出的优势。实测次镜的面形精度RMS为0.0181λλ=632.8 nm),在16 ℃及24 ℃时次镜面形变化量不超过0.0025λ;组件基频达到502.1 Hz,在快速高低温循环及大量级振动后次镜面形基本维持不变;装配容差测试中,次镜在0.02 mm不平度的作用下仅发生微弱变形。刚性支撑结构可以显著提升中小口径反射镜工作性能,在遥感器光机结构研制领域内具有广阔的应用前景。
空间光学 反射镜 刚性支撑 消热 面形精度稳定性 
激光与光电子学进展
2024, 61(5): 0522005
作者单位
摘要
1 湖北工业大学 机械工程学院,湖北武汉430068
2 华中科技大学 机械科学与工程学院,湖北武汉430074
3 国家数字化设计与制造创新中心,湖北武汉40206
为了获得优化的单晶硅激光辅助超精密切削工艺,探究切削加工后单晶硅元件的表面特性,采用正交实验方法对单晶硅的激光原位辅助单点金刚石切削工艺参数进行优化,并对切削加工单晶硅表面质量、面形精度、残余应力和光学透过率等表面特性进行了测量与分析。通过正交实验数据的表面粗糙度方差分析和信噪比分析,获得的优化工艺参数组合为主轴转速为1 500 r/min、进给速率为5 mm/min、切削深度为3 μm、激光功率为4.5 W。采用上述工艺参数加工的165 mm口径单晶硅非球面光学元件的表面粗糙度和面形精度PV分别为2.74 nm和0.52 μm。激光辅助切削加工后的单晶硅表面存在(-1 760.8±362.1) MPa的残余压应力。激光辅助超精密切削加工的单晶硅光学元件在3~5 μm中红外波段镀膜前后的透过率分别为55%和98%,折射率为3.43。实验结果表明,激光辅助超精密切削技术可作为单晶硅光学元件的半精加工或最终精加工工序,以提升复杂面形单晶硅元件的制造效率。
激光辅助超精密切削 单晶硅 工艺优化 表面粗糙度 面形精度 残余应力 透过率 laser assisted ultra-precision cutting monocrystalline silicon processing optimization surface roughness surface accuracy residual stress transmittance 
光学 精密工程
2023, 31(1): 99
作者单位
摘要
1 沈阳建筑大学 机械工程学院,辽宁沈阳068
2 沈阳建筑大学 土木工程学院,辽宁沈阳110168
3 哈尔滨工业大学 机器人技术与系统国家重点实验室,黑龙江哈尔滨150001
针对空间可展开天线大型化、模块化、高精度化发展趋势,提出一种六棱柱模块化空间可展开天线支撑结构形面精度分析模型。阐述了六棱柱模块化空间可展开天线的结构组成,分析了六棱柱模块化结构的拓扑规律。基于等包络圆思想及机器人学基本理论,提出了点面法和两点法2种包络圆数学建模方法,并由此建立了等包络圆交点数学模型及肋单元夹角数学模型,进而构建了用于六棱柱模块化可展开天线支撑结构形面精度分析的数学模型。最后,采用数值仿真与试验验证相结合的方式对建立的模型进行了验证。仿真及试验结果表明:包络圆能紧密地贴合在球面上,与球面吻合良好;数值仿真模型状态下,六棱柱模块间实现了准确连接;试验中特征点的绝对误差主要分布在5~10 mm,相对误差主要集中在0.05%~0.1%,肋单元夹角绝对误差多分布在0.05°~0.1°之间,表明测量值和理论值间偏差较小、吻合较好。所提出的形面精度分析模型能够求解出所有模块连接点的空间坐标,为超多模块可展开天线形面精度的分析及研究提供了理论基础。
可展开天线 模块化 形面精度 数值仿真 工业摄影测量 大口径 坐标变换 deployable antennas modularization surface accuracy numerical simulation photogrammetry large aperture coordinate transformation 
光学 精密工程
2021, 29(12): 2855
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所光电探测部, 吉林 长春 130033
2 中国成套工程有限公司, 北京 100044
针对某400 mm口径捕获与跟踪望远镜,提出了一种结构设计方案。在 该方案中,对主镜支撑采用三点柔性底支撑加球头芯轴侧支撑的结构,避免支撑应力干涉,保证主镜具有高面形精度;在 主、次镜连接环节中使用铟钢连杆结构,确保大温差下主、次镜间距的变化在公差范围内,保证望远镜在极限条件下具有 良好像质。进而建立望远镜整体结构的有限元模型,分析了主镜面形精度及镜筒结构强度,得出主镜面形均方根(RMS)值 优于λ/40, 主、次镜相对偏心及倾斜分别为3 μm、2.5′′, 满足指标要求。使用激光干涉 仪及平行光管对望远镜光学指标进行了定量检测,发现光学系统RMS 值优于λ/14, 星点半峰全宽(FWHM)值为1.432, 接近衍射极限水平。所设计方案对同类望远镜的结构设计具有一定参考价值。
应用光学 光机结构 主镜支撑 衍射极限 面形精度 applied optics optical mechanical structure main mirror support diffraction limit surface accuracy 
量子电子学报
2020, 37(3): 294
作者单位
摘要
中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
为了同时满足激光装置对大口径反射镜面形精度和结构稳定性的控制要求,提出了一种反射镜多自由度解耦的多点夹持方式,通过限位实现对反射镜多自由度的控制,以此避免由夹持带来的附加面形。采用有限元法分析了所提方式的有效性,并通过实验验证了分析方法及该夹持方式的可行性,结果表明采用该反射镜夹持方式带来的附加面形较小,满足反射镜低应力附加夹持面形的要求。在此基础上,对45°倾斜放置的反射镜的面形进行了模拟,探究了不同夹持点位置分布对反射镜面形精度的影响规律,模拟结果表明:为了保证反射镜的面形精度,至少要有一个夹持点位于反射镜的长边。该研究成果对大口径反射镜夹持设计具有重要的指导意义。
光学设计 大口径反射镜 低应力夹持 面形精度 有限元模拟 
中国激光
2020, 47(11): 1105004
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
为了改善反射镜在环境温度波动情况下的面形精度下降问题, 设计了一种联杆型双轴Bipod柔性支撑结构, 并基于柔度理论对它进行了参量优化。首先, 对支撑结构的柔度进行了分析和计算, 推导出柔性支腿以及反射镜组件的柔度理论公式。然后, 以保证反射镜轴向支撑刚度和卸载能力为目的, 计算得到一组针对口径为200 mm反射镜的柔性支撑结构尺寸参数。最后, 通过有限元分析和振动试验, 对支撑结构的柔度公式、动态特性、温度适应性进行了分析验证。分析结果显示, 在一定作用力下, 柔性支腿的理论值与有限元分析值的误差在10%以内; 振动试验得到组件的一阶频率为358.5 Hz, 与理论计算值的相对误差为8.8%; 在20 ℃温差下, 反射镜面形精度为7.7 nm(rms)。试验结果验证了理论模型的有效性, 同时说明Bipod柔性支撑结构能够降低温度波动对反射镜面形的影响。
柔性支撑 反射镜 面形精度 柔度 flexture support Bipod Bipod reflector surface accuracy flexibility 
光学 精密工程
2018, 26(7): 1691
黄元申 1,2,3,*吕昊宇 1,2,3曾媛 1,2,3韩森 1盛斌 1,2,3
作者单位
摘要
1 上海理工大学 光电信息与计算机工程学院, 上海 200093
2 上海理工大学 上海市现代光学系统重点实验室, 上海 200093
3 上海理工大学 教育部光学仪器与系统工程研究中心, 上海 200093
光学平面的干涉检测发展至今,检测精度已经大大提高,而高精度的平面检测很大程度上受限于参考平面的精度,针对参考平面面形对检测结果的影响,利用绝对平面检测方法,通过多次测量以达到消除参考平面偏差的目的。从测量方式和计算方法两个方面分析了不同绝对平面检测方法的原理,介绍了最新发表的相关成果以及研究动态,并对比了检测结果。这些检测方法已经精确到像素级,并通过多种计算方法使得峰谷(PV)值的计算精度大部分达到了λ/100。
光学干涉测量 绝对平面检测 面形精度 optical interferometry absolute flatness testing surface accuracy 
光学仪器
2018, 40(1): 72
作者单位
摘要
中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
针对1.2 m大口径望远镜主镜支撑系统, 为保证主镜面形精度均方根要求, 提出了一种有效的装调方法。该主镜支撑系统结合运动学原理, 分别设计了Whiffletree轴向支撑和柔性切向杆侧向支撑结构, 以保证其在较大温差范围内(-20~60 ℃)以及不同俯仰状态下(垂直-水平)始终具有较好的面形精度。机械加工误差及安装误差使柔性机构在组装过程中极易引入装配应力, 明显地增大主镜表面变形。借助于有限元软件对装调过程中可能出现的误差进行仿真分析, 根据结果制定装调流程, 并对实际装调进行指导。完成主镜支撑系统装调后, 采用补偿器和干涉仪对主镜的垂直检测及水平检测, 检测出两种状态下主镜的实际面形误差分别为λ/42和λ/31(λ=632.8 nm)。
主镜支撑 有限元分析 装调 面形精度检测 primary mirror support FEA assembly surface accuracy measurement 
红外与激光工程
2017, 46(9): 0918003
作者单位
摘要
哈尔滨工业大学 光学目标仿真与测试技术研究所,黑龙江 哈尔滨 150080
鉴于全视角高精度三维测量仪中现有光学成像系统无法同时满足大视角、高分辨率和低畸变等技术指标,为此设计了一种能够同时克服上述缺陷的光学成像和畸变校正系统。采用复杂化双高斯结构形式进行f-θ镜头设计,引入非球面提高系统成像质量。实验结果表明,设计的光学系统为长焦广角低畸变高分辨率光学系统,在环境温度-10 ℃~70 ℃下,视场角达到90°,畸变小于-0.001 67%,传递函数达到0.4@100 lp/mm,可实现工作距离3 m~100 m成像清晰。同时,光学系统中非球面镜片的面型精度会对成像质量产生很大的影响,根据公差分析,非球面的面型精度PV值小于0.17 μm时系统成像质量满足要求,实际加工过程中非球面面型PV值达到0.158 μm,传递函数达到设计指标要求,提高了系统的成像质量。
高分辨率 长焦 广角低畸变光学系统 面型精度 high resolution long-focus low distortion wide-angle optical system surface accuracy 
应用光学
2017, 38(5): 725

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!