作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所光电探测部, 吉林 长春 130033
2 中国成套工程有限公司, 北京 100044
针对某400 mm口径捕获与跟踪望远镜,提出了一种结构设计方案。在 该方案中,对主镜支撑采用三点柔性底支撑加球头芯轴侧支撑的结构,避免支撑应力干涉,保证主镜具有高面形精度;在 主、次镜连接环节中使用铟钢连杆结构,确保大温差下主、次镜间距的变化在公差范围内,保证望远镜在极限条件下具有 良好像质。进而建立望远镜整体结构的有限元模型,分析了主镜面形精度及镜筒结构强度,得出主镜面形均方根(RMS)值 优于λ/40, 主、次镜相对偏心及倾斜分别为3 μm、2.5′′, 满足指标要求。使用激光干涉 仪及平行光管对望远镜光学指标进行了定量检测,发现光学系统RMS 值优于λ/14, 星点半峰全宽(FWHM)值为1.432, 接近衍射极限水平。所设计方案对同类望远镜的结构设计具有一定参考价值。
应用光学 光机结构 主镜支撑 衍射极限 面形精度 applied optics optical mechanical structure main mirror support diffraction limit surface accuracy 
量子电子学报
2020, 37(3): 294
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130000
针对某700mm口径高分辨率光学成像望远镜, 提出了一种结构设计方案。对主镜支撑采用9点whiffle-tree底支撑加球头芯轴侧支撑的结构方案, 保证主镜具有高面形精度; 望远镜镜筒采用碳纤维桁架式结构, 既满足望远镜整体重量较轻, 又可以保证系统刚度;建立了望远镜有限元模型, 分析主镜支撑面形、主次镜相对偏心及系统整体模态特性, 其中主镜支撑面形精度可达到λ/40,主、次偏心为0.015mm(水平状态)、0.008mm(竖直状态);使用激光干涉仪及平行光管对望远镜光学指标进行定量检测, 光学系统RMS可达到λ/14, 鉴别率板检测望远镜分辨率可达到46lp/mm, 均接近光学极限水平。为同类望远镜的结构设计提供一定参考价值。
望远镜 主镜支撑 桁架式 面形精度 有限元分析 telescope main mirror support truss RMS finite element analysis 
光学技术
2020, 46(4): 385
孙奇 1,2,3,*宫雪非 1,2,**
作者单位
摘要
1 中国科学院国家天文台南京天文光学技术研究所, 江苏 南京 210042
2 中国科学院天文光学技术重点实验室(南京天文光学技术研究所), 江苏 南京 210042
3 中国科学院大学, 北京 100049
混合使用响应面近似模型和直接优化方法对主镜进行轻量化和支撑点布局集成设计,并以2.5 m地基光学望远镜的超低膨胀主镜为例,对该方法的参数敏感性分析、基于Kriging响应面多目标遗传算法的全局优化、基于混合整数序列二次规划梯度算法的局部优化过程进行研究,并采用折衷规划理论制定评价函数。集成优化结果表明,与相同尺寸的实心镜相比,主镜采用背部局部开放式六边形孔夹芯三明治结构时,轻量化率为72.13%。主镜轴向采用54点whiffletree被动支撑,在光轴竖直及重力载荷下镜面变形的均方根值为6.08 nm,各项指标均满足设计要求。
地基光学望远镜 轻量化设计 主镜支撑 集成优化设计 混合优化方法 
光学学报
2020, 40(22): 2212001
作者单位
摘要
中国科学院长春光学精密机械与物理研究所, 吉林 长春130033
主镜支撑技术一直是大口径望远镜技术的关键技术, 以2 m SiC轻量化主镜为研究对象, 探究了通过力矩校正的半主动支撑方法, 用于校正一些由于加工误差、装配误差等因素引起的一些不可预知的因素所导致的低阶波前像差。首先建立有限元仿真模型, 进行仿真分析, 分别在6处Tripod柔铰处施加两个方向正交的, 大小为1 Nmm的单位校正力Mx和My, 共分析12种工况下的主镜变形情况; 然后利用微小变形的线性叠加原理, 分析计算该力矩校正方法对低阶波前像差的校正能力, 由分析计算可知, 该力矩校正方法对于加工、装配及装调过程中最常出现的倾斜和像散具有很好的校正能力, 可以将初始镜面RMS值归一化为1/10λ(λ=632.8 nm)的像差, 分别校正到0.687 nm和2.97 nm, 校正能力分别为98.9%和95.3%, 所需的最大校正力矩分别为6.3 Nmm和19.9 Nmm; 然后根据主镜的whiffletree支撑结构, 设计了力矩校正结构方案; 最后通过试验验证柔性薄片力矩校正结构形式的可行性, 进而验证半主动支撑力矩校正方案的可行性, 为半主动支撑的工程应用积累了一定的宝贵经验, 具有一定的指导意义。
主镜支撑 力矩校正 半主动 SiC SiC primary mirror support moment correction semi-active 
红外与激光工程
2019, 48(5): 0518003
作者单位
摘要
中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
针对1.2 m大口径望远镜主镜支撑系统, 为保证主镜面形精度均方根要求, 提出了一种有效的装调方法。该主镜支撑系统结合运动学原理, 分别设计了Whiffletree轴向支撑和柔性切向杆侧向支撑结构, 以保证其在较大温差范围内(-20~60 ℃)以及不同俯仰状态下(垂直-水平)始终具有较好的面形精度。机械加工误差及安装误差使柔性机构在组装过程中极易引入装配应力, 明显地增大主镜表面变形。借助于有限元软件对装调过程中可能出现的误差进行仿真分析, 根据结果制定装调流程, 并对实际装调进行指导。完成主镜支撑系统装调后, 采用补偿器和干涉仪对主镜的垂直检测及水平检测, 检测出两种状态下主镜的实际面形误差分别为λ/42和λ/31(λ=632.8 nm)。
主镜支撑 有限元分析 装调 面形精度检测 primary mirror support FEA assembly surface accuracy measurement 
红外与激光工程
2017, 46(9): 0918003
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
针对1.2 m微晶主镜, 提出了基于6套柔性切向杆机构的侧向支撑与基于18点半柔性Whiffletree机构的轴向支撑相结合的新型主镜支撑方案,用于保证该主镜在较大温差范围以及不同俯仰角度下始终保持良好的面形精度及较高的系统刚度。 分析了该机构的工作原理,实验测试了主镜的面形精度及支撑系统的模态。机构分析表明该支撑方式可有效保证主镜定位精度和面形精度,并具有热解耦能力; 有限元分析确认系统具有良好的支撑性能; 面形精度检测得出主镜光轴垂直面形精度RMS达15.25 nm,光轴水平面形精度RMS为20.75 nm,模态测试则获得主镜支撑系统的一阶固有频率为60.3 Hz。实测结果验证了该新型主镜支撑系统具有良好的面形保持能力及支撑刚度,分析结果与实测结果符合度较好,主镜光轴垂直和水平状态面形精度RMS的相对误差分别为14.0%和17.8%,一阶固有频率相对误差为10.8%。得到的结果验证了有限元建模及分析的可信性,支撑系统设计方案的合理性及相关理论推导的正确性。
微晶主镜 主镜支撑 面形检测 模态测试 有限元分析 zerodur primary mirror primary mirror support surface figure test modal test Finite Element Analysis(FEA) 
光学 精密工程
2016, 24(10): 2462
作者单位
摘要
中国科学院长春光学精密机械与物理研究所, 长春 130033
提出了傅里叶望远镜外场实验系统拼接主镜支撑结构,详细介绍了各组件施工及安装过程.该主镜由61块六边形球面子镜拼接而成,高6 m,宽5.5 m,是我国目前用于望远镜系统中能量接收面积最大的拼接主镜.子镜采用模块化设计,互换性好且均可实现3个自由度的精密调整.支撑桁架采用分体结构设计,便于拆装和运输;地基采用混凝土浇筑预埋型钢构件,各分体组件由螺栓与地基联接为一个整体,保证结构整体刚度的同时,也满足系统对温度的适应性.通过实验验证:该主镜支撑结构稳定性优于0.075 mrad,子镜指向调整准确度优于0.05 mrad,对已安装的8块子镜进行共焦试验,光斑质心重合准确度小于20 mm,满足外场实验对拼接主镜的技术要求.
傅里叶望远镜 拼接镜 主镜支撑 子镜模块 Fourier telescope Segmented mirror Support of primary mirror Segment module 
光子学报
2011, 40(1): 87
作者单位
摘要
中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
通过对大口径光电望远镜中主镜中心定位机构的研究分析,设计了一种胀紧圈球头形式的中心定位机构,指出了其优缺点和在望远镜中适合应用的口径大小以及工况要求。定位机构在望远镜主镜支撑结构中,实现了主镜在垂直于光轴方向的平面内的有效定位,并且与主镜底支撑和侧支撑联合作用,承担部分主镜的载荷,保证了主镜的面形精度。同时,定位机构还具备温度适应特性,满足实际应用过程中的环境温度要求。研究结果成功地应用到300~1230 mm口径的主镜支撑结构中,取得了预期的效果。
光学设计 光机结构 主镜支撑 中心定位机构 大口径望远镜 
激光与光电子学进展
2011, 48(3): 032202
余飞 1,2,*吴清文 1王宝石 1邹艳 1,2[ ... ]郑飞 1,2
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院 研究生院,北京 100039
通过随机振动峰值应力响应考核空间相机在随机振动环境下主镜支撑结构的可靠性存在一定的局限性。本文针对主镜支撑结构在随机振动试验中出现断裂的现象,采用振动疲劳寿命分析对结构的可靠性进行考察,提出了应用数值仿真技术预测结构随机振动疲劳寿命的方法。根据有限元和随机振动疲劳相关理论,采用振动疲劳分析软件对某空间相机支撑环柔节进行了随机振动疲劳分析,计算了疲劳寿命的大小及分布。比较仿真和随机振动试验结果表明,采用振动疲劳寿命评价随机振动环境下结构的可靠性是合理的,利用数值仿真技术预测结构的随机振动疲劳寿命是可行的。
主镜支撑机构 随机振动 振动疲劳寿命 数值仿真 有限元法 primary mirror support structure random vibration vibration fatigue life numerical simulation finite element method 
中国光学
2009, 2(6): 495
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,长春 130033;中国科学院研究生院,北京 100039
2 中国科学院长春光学精密机械与物理研究所,长春 130033
大口径望远镜主镜的面形精度是影响望远镜成像质量的关键因素之一。光电系统中主镜轴向支撑点位置,对面形精度起着非常重要的作用,主镜支撑点位置合理与否,在一定程度上影响着光学系统的成像质量。本文对大口径望远镜主镜的轴向支撑和径向支撑技术进行了详细地研究,利用有限元软件ANSYS 建立了主镜的参数化模型,对不同口径主镜的轴向支撑点数目和位置进行了优化,从而给出了最佳支撑点的位置。优化分析结果表明了,主镜的面形精度满足系统的精度要求,并且轴向支撑对镜面的面形影响较大。
大口径望远镜 主镜支撑 支撑结构 主镜结构 主镜变形 large aperture telescope support of primary mirror support structure structure of primary mirror deformation of primary mirror 
光电工程
2009, 36(1): 107

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!