作者单位
摘要
南华大学 核科学技术学院衡阳 421001
中子扩散方程高阶谐波可用于重构堆芯中子注量率分布,但传统源迭代与源修正迭代法求解时的收敛速度慢,计算耗时长。采用隐式重启Arnoldi方法(Implicitly Restarted Arnoldi Method,IRAM)求解本征值问题的中子扩散方程获得谐波数据,通过本征正交分解(Proper Orthogonal Decomposition,POD)与伽辽金(Galerkin)投影相结合的方法构建POD-Galerkin低阶模型,并重构二维稳态TWIGL基准题中子注量率分布。研究结果表明:IRAM方法在求解中子扩散方程的高阶本征值和谐波问题上具有较高的精度;基于POD-Galerkin低阶模型重构中子注量率分布具有较高的保真性与计算效率,有效增值系数与参考解的误差为8.7×10-5,对角线上快群和热群中子注量率最大相对误差为2.56%,且低阶模型计算用时仅为全阶模型的10.18%。本研究为堆芯中子注量率重构提供了一种可靠且高效的方法,该方法不仅可用于重构稳态时堆芯中子注量率分布,还具有在瞬态情况下预测中子注量率分布的潜力,有望在未来的应用中进一步拓展。
中子扩散方程 隐式重启Arnoldi方法 本征正交分解 伽辽金投影 中子注量率重构 Neutron diffusion equation Implicitly restarted Arnoldi method Proper orthogonal decomposition Galerkin projection Neutron flux reconstruction 
核技术
2024, 47(2): 020604
作者单位
摘要
中国核动力研究设计院 核反应堆系统设计技术重点实验室, 成都 610041
三维多群中子扩散方程的精确、高效求解是核动力堆芯设计及燃料管理的基础。应用有限差分方法求解该方程具有简便、精确、成熟的优点; 然而,该方法的计算量和存储量均较大,极大地限制了它的计算规模和应用范围。本文基于大规模并行计算,研究三维多群中子扩散方程有限差分方法:采用中心有限差分格式离散中子扩散方程; 基于MPI并行编程模型,采用空间区域分解的方式实现大规模并行计算; 采用多群多区域耦合PGMRES算法进行并行加速。在集群服务器上开发了ParaFiDi程序,并采用IAEA3D,PHWR等多个基准题对该程序进行验证。数值结果表明,ParaFiDi程序具有较高的计算精度和计算效率。
三维多群中子扩散方程 有限差分方法 大规模并行计算 区域分解算法 多群多区域耦合PGMRES算法 3D multi-group neutron diffusion equation finite difference method large-scale parallel computation domain decomposition algorithm multi-group multi-domain coupled PGMRES algorithm 
强激光与粒子束
2017, 29(8): 086001
作者单位
摘要
清华大学 核能与新能源技术研究院, 先进核能技术协同创新中心, 先进反应堆工程与安全教育部重点实验室, 北京 100084
研究了JFNK框架下高温堆中子扩散问题的求解方法。研究结果表明,JFNK方法在求解与源迭代相同形式中子扩散方程时,相对残差下降趋势为逐渐加快并趋于稳定,有利于更高求解精度的实现。使用通量归一化附加方程可以获得更好的JFNK非线性迭代特性,但在算例中其部分牛顿修正方程求解时间偏多,总计算时间高于显式有效增殖系数附加方程法,需要研究更高效的JFNK预处理方法对线性求解环节进行改善。
高温堆 中子扩散方程 附加方程 源迭代 high temperature reactor neutron diffusion equation additional equation source iteration JFNK JFNK 
强激光与粒子束
2017, 29(3): 036024

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!