作者单位
摘要
1 天津农学院工程技术学院, 天津 300384
2 南开大学物理学院光子学中心, 天津 300071
3 天津农学院农业分析测试中心, 天津 300384
传统荧光光谱技术已被用于土壤中多环芳烃(PAHs)的检测, 但由于土壤体系的复杂性、 PAHs污染物的多样化和微量化, 传统的荧光光谱技术无法有效提取土壤中PAHs的特征信息。 为了解决上述问题, 提出并建立一种基于二维相关荧光谱土壤中多环芳烃的检测方法。 以土壤中典型的多环芳烃蒽和菲为研究对象, 配置38个蒽菲混合标准土壤样品(蒽和菲的浓度范围均为0.000 5~0.01 g·g-1), 在激发波长265~340 nm, 发射波长350~500 nm范围内采集了所有样品的三维荧光谱。 以激发波长为外扰, 对外扰变化的动态一维荧光谱进行相关计算, 得到每一样品的同步二维相关荧光谱。 研究了浓度均为0.005 g·g-1蒽菲混合土壤样品的三维荧光谱和同步二维相关荧光谱特性, 在同步谱主对角线398, 419, 444和484 nm处存在自相关峰, 其中, 398和484 nm荧光峰来自土壤中的菲, 419和444 nm荧光峰来自土壤中的蒽; 在主对角线外侧, 蒽和菲两组荧光峰之间存在负的交叉峰, 进一步验证了其来源不同; 同时, 在(408, 434) nm和(434, 467) nm处出现交叉峰, 其中408和434 nm荧光峰来自土壤中的菲, 467 nm荧光峰来自土壤中的蒽。 指出与三维荧光谱表征的信息相比, 二维相关荧光谱不仅能提取更多的特征信息(408和467 nm的特征峰在三维荧光谱中未被表征), 而且还能提供荧光峰之间的相互关系, 对其来源进行有效解析。 在上述研究二维相关荧光谱特性的基础上, 基于同步相关谱矩阵(38×151×151)建立了定量分析土壤中蒽和菲污染物浓度的多维偏最小二乘(N-PLS)模型, 对蒽的校正和预测相关系数分别为0.986和0.985, 校正均方根误差(RMSEC)和预测均方根误差(RMSEP)分别为4.33×10-4和5.55×10-4 g·g-1; 对菲的校正和预测相关系数分别为0.981和0.984, RMSEC和RMSEP分别为5.20×10-4和4.80×10-4 g·g-1。 为了比较, 基于三维荧光光谱矩阵(38×16×151)建立了定量了分析土壤中蒽和菲的N-PLS模型, 对蒽的校正和预测相关系数分别为0.981和0.972, RMSEC和RMSEP分别为5.09×10-4和6.74×10-4 g·g-1; 对菲的校正和预测相关系数分别为0.957和0.956, RMSEC和RMSEP分别为7.36×10-4和7.77×10-4 g·g-1。 指出, 对于土壤中的蒽和菲检测, 基于二维相关荧光谱的N-PLS模型的相关系数r, RMSEC和RMSEP都要优于基于三维荧光谱的N-PLS模型。 研究结果表明: 所提出和建立的方法—二维相关荧光谱直接检测土壤中PAHs污染物不仅可行, 而且能提供更好的分析结果。 该研究为激光诱导荧光结合相关谱技术现场直接检测土壤中多环芳烃污染物提供了理论和实验基础, 具有较好的应用前景。
土壤 多环芳烃 二维相关荧光谱   Soil Polycyclic aromatic hydrocarbons(PAHs) Two-dimensional (2D) correlation fluorescence spec Anthracene Phenanthrene 
光谱学与光谱分析
2019, 39(3): 818
作者单位
摘要
1 天津农学院工程技术学院, 天津 300384
2 南开大学物理学院光子学中心, 天津 300071
3 天津农学院农业分析测试中心, 天津 300384
荧光光谱技术已被用于检测土壤中多环芳烃。 但土壤湿度对多环芳烃的荧光强度产生很强的干扰, 这对于荧光光谱技术的土壤多环芳烃快速实时检测技术的发展无疑是一种挑战。 为了研究土壤湿度对多环芳烃荧光特性的影响, 分别配置了八个不同湿度(含水量5%~40%, 间隔5%)的菲土壤样品。 采用美国PE公司的LS-55荧光分光光度计对不同湿度含量的菲土壤样品进行了检测, 得到不同湿度含量下的一维动态荧光谱, 以土壤湿度为外扰, 研究了其二维相关荧光光谱特性, 发现菲土在386, 408和432 nm处荧光强度随着土壤中湿度的增大而增强, 而333 nm处瑞利散射光强度却在减小, 提出通过建立菲荧光强度、 瑞利散射光强度与土壤湿度之间的关系, 有可能实现土壤湿度对菲荧光强度影响的校正。 同时, 也研究了土壤湿度对定量分析菲浓度标准曲线的影响, 指出土壤湿度极大影响着精准定量分析菲浓度标准曲线的建立。
多环芳烃 土壤 二维相关荧光谱  湿度含量 Polycyclic aromatic hydrocarbons Soil Two-dimensional (2D) correlation fluorescence spec Phenanthrene Moisture content 
光谱学与光谱分析
2017, 37(4): 1152
作者单位
摘要
1 天津农学院 工程技术学院, 天津 300384
2 天津农学院 农业分析测试中心, 天津 300384
为了准确检测土壤中的多环芳烃, 以土壤中典型多环芳烃污染物蒽为检测对象, 研究了土壤粒径大小对其荧光特性的影响, 并提出了一种校正土壤粒径大小对多环芳烃标准曲线影响的方法。研究了蒽在土壤中的荧光特性, 指出蒽在421 nm、442 nm和470 nm处出现较强的荧光峰。接着, 制备7种不同粒径大小的蒽土壤样品, 并以土壤粒径大小为外扰, 构建了同步和异步二维相关荧光谱, 研究了蒽荧光强度和304 nm处瑞利散射光强随土壤粒径大小的变化。结果显示, 随着土壤粒径增大, 蒽荧光强度和304 nm处瑞利散射光强度都有增强。最后, 分别建立了80目和160目土壤粒径下定量分析土壤蒽浓度的标准曲线, 并通过304 nm处瑞利散射光对蒽荧光进行校正。结果表明: 该方法有效降低了土壤粒径大小对蒽标准曲线的影响。
多环芳烃 土壤 粒径大小  二维相关荧光谱 校正方法 polycyclic aromatic hydrocarbons soil particle size anthracene two-dimensional (2D) correlation fluorescence spec correction method 
光学 精密工程
2016, 24(11): 2665

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!