张越华 1,2邢龙江 2聂飞 2陈文铖 2,*[ ... ]霍延平 2,4,**
作者单位
摘要
1 广州城市职业学院, 广东 广州  510405
2 广东工业大学 轻工化工学院, 广东 广州  510006
3 广东硕成科技股份有限公司, 广东 韶关  512600
4 广东工业大学 分析测试中心, 广东 广州  510006
以蒽作为三线态-三线态湮灭(TTA)型蓝光材料的基元,通过在蒽的9和10位分别引入弱给电子基团二苯并噻吩和弱吸电子基团苯氰,设计合成了两个给体-受体型深蓝光TTA材料4-(10-(二苯并[bd]噻吩-4-基)蒽-9-基)苯腈(2)和4-(10-(二苯并[bd]噻吩-2-基)蒽-9-基)苯腈(3),并对它们的热稳定性、电化学性质、光物理性质及电致发光性质进行了系统表征。在纯膜状态下,两个化合物的光致发光峰分别位于445 nm和451 nm处,光致发光量子产率分别为40.2%和57.9%。基于化合物2和3的非掺杂器件的电致发光峰分别位于448 nm和458 nm处,实现了深蓝光发射。两个器件获得了较好的发光效率,其最大电流效率分别为4.2 cd·A-1和6.9 cd·A-1,最大功率效率分别为2.3 lm·W-1和3.6 lm·W-1,最大外量子效率分别为3.8%和5.6%。即使在 1 000 cd·m-2亮度下,两个器件的外量子效率依然保持在3.7%和5.4%,表现出极低的效率滚降。
 二苯并噻吩 苯氰 深蓝光TTA材料 anthracene dibenzothiophene benzonitrile deep blue TTA material 
发光学报
2024, 45(2): 269
作者单位
摘要
西安瑞联新材料股份有限公司, 陕西 西安 710077
设计合成了一种以蒽[2,3?b]苯并呋喃为核心的新型化合物,通过给体咔唑基团修饰得到化合物2?(蒽[2,3?b]苯并呋喃?3?基)?9?苯基?9H?咔唑(ABPCz)。经过掺杂器件研究,ABPCz可以实现蓝光发射,最大电流效率为8.79 cd/A,最大外量子效率为7.8%,CIE(0.17,0.23),峰值光谱448 nm,在476 nm处有较强的肩峰,在 1 000 cd/m2初始亮度下测试器件LT90(亮度衰减到初始亮度的90%)寿命达到153 h。结果表明,蒽[2,3?b]苯并呋喃经过咔唑基修饰可以得到高效、长寿命的蓝光器件,这为设计开发高性能蓝光材料提供了一个新途径。
有机电致发光 [2,3-b]苯并呋喃 蓝光 荧光材料 organic electroluminescence anthracene[2,3-b] benzofuran blue light fluorescent material 
发光学报
2024, 45(1): 86
许雷 1俞越 1,2,*潘玉钰 3王博涵 1[ ... ]马於光 1,***
作者单位
摘要
1 华南理工大学 发光材料与器件国家重点实验室,广东 广州 510640
2 东莞伏安光电科技有限公司,广东 广州 510006
3 沈阳工业大学 石油化工学院,辽宁 辽阳 111003
蓝光OLED材料是电致发光领域的关键和难点。基于高能激发态转换的“热激子”材料表现出优异蓝光材料的潜能。本文通过调节给受体的推拉电子能力,以蒽为核心构筑单元、三苯基苯为弱给体、苯氰基为受体,设计合成了一种新型D?π?A结构分子TACN。扭曲的三苯基苯提供了高度扭曲的分子构象,有效减弱了聚集态下的猝灭效应,因此TACN表现出高的荧光量子产率(聚集态下47%)。实验结果和理论分析表明,TACN具备“热激子”特征,其大的T2?T1能隙(1.45 eV)有效阻碍了从T2到T1的内转换(IC)过程,而小的T2?S1能差(0.18 eV,T2> S1)有利于促进反向系间窜越(RISC)过程。基于TACN的非掺杂器件表现出深蓝色发射(λmax= 444 nm),半峰宽(FWHM)为59 nm,色坐标为(0.17,0.13)。其最大外量子效率(EQEmax)为8.3%,相应的激子利用率(EUE)最高为88.7%。
有机发光二极管 热激子 蓝光材料  反向系间窜越 organic light emitting diodes hot exciton blue emitter anthracene reverse intersystem crossing 
发光学报
2023, 44(7): 1300
作者单位
摘要
苏州科技大学, 绿色印刷纳米光子工程技术研究中心, 材料科学与工程学院, 江苏 苏州 215009
弱光上转换是将低能量光子转换为高能量光子的过程, 在三维荧光显微成像、 太阳能电池、 光催化等领域具有广泛的潜在应用, 因而成为有机荧光材料领域的热点课题。 目前基于三线态-三线态湮灭机制有机弱光上转换材料(TTA-UC)的研究已较为深入, 有关发光机理及应用研究均有较多报道; 然而针对另一种有机弱光上转换机理——基于单光子热带吸收的弱光上转换(OPA-UC)的研究目前还较为少见。 氮杂蒽衍生物由于具有良好的结构刚性和平面性, 高的荧光量子产率, 是研究TTA-UC和OPA-UC两种有机上转换发光的理想模型分子结构。 通过研究比较三种氮杂蒽衍生物: 酚藏花红(PSF)、 藏红T(SFT)、 亚甲基紫(MTV)各自TTA-UC和OPA-UC的发光性能差异, 分析探讨了分子结构对OPA-UC发光性能及TTA-UC敏化效率的构效关系。 实验发现酚藏花红和藏红T由于具有较高的荧光量子产率, 同时辐射衰减常数较大, 其主要衰减过程为辐射衰减; 而亚甲基紫具有较高的分子内电荷转移能力(ICT), 因而非辐射衰减部分更多。 研究三种分子的TTA-UC性能, 发现亚甲基紫的三线态能级过低无法进行三线态-三线态能量转移过程, 而藏红T由于拥有更高的三线态寿命而具有更高的上转换发光效率(9.69%), 是酚藏花红体系(3.16%)的3倍。 进一步研究酚藏花红和亚甲基紫的OPA-UC性能差异, 发现相同浓度条件(10-3 mol·L-1)下亚甲基紫(0.12%)的OPA-UC发光效率相较于酚藏花红(0.059%)更高, 且随着浓度的升高, 亚甲基紫的OPA-UC发光增强效应更大。 进一步研究表明, 在TTA-UC发光过程中, 敏化剂的敏化效率主要受分子三线态寿命以及系间窜跃能力影响, 寿命越长, 系间窜跃能力越强, 敏化效率越高; 而在OPA-UC发光过程中, 湮灭剂分子的发光学率主要受ICT影响, ICT能力越大, 分子发光效率越高。 使用氮杂蒽分子廉价易得, 对未来高性能TTA-UC和OPA-UC发光分子的设计具有一定的实际意义。
弱光上转换 三线态-三线态湮灭上转换 单光子吸收上转换 氮杂衍生物 Low power upconversion Triplet-triplet annihilation upconversion Single-photon hot band absorption upconversion Azaanthracene derivatives 
光谱学与光谱分析
2022, 42(6): 1761
作者单位
摘要
苏州科技大学材料科学与工程学院, 江苏 苏州 215009
三线态-三线态湮灭(TTA)上转换是一种以低功率非相干光泵浦实现大的反斯托克位移的光谱转换技术, 具有激发和发射波长可调的特点, 在提高太阳能利用率方面具有重要应用价值。 经过十几年的发展, 敏化剂分子的研究取得了很大进步, 而发光剂分子的研究相对落后。 以敏化剂多吡啶钌(Ⅱ)配合物[Ru(bpy)2Phen]2+和发光剂2-位取代的蒽衍生物(DTACl和DTACN)作为研究对象, 复配得到两个弱光上转换体系。 通过敏化剂与发光剂的发射和上转换光谱性质, 系统研究了蒽2-位取代基团对发光效率、 三线态-三线态能量传输(TTET)、 TTA等能量传递过程的影响。 研究发现DTACl具有比DTACN高的荧光量子产率、 大的三线态猝灭常数和高的TTA效率, 这些结果最终使得[Ru(bpy)2Phen]2+/DTACl的上转换效率高于[Ru(bpy)2Phen]2+/DTACN。 除此之外, 利用敏化剂、 发光剂的发射光谱, 结合密度泛函理论计算, 进一步从轨道能级的角度, 研究了敏化剂、 发光剂三线态能级差与TTET效率之间的关系, 以及发光剂三线态与单线态能级差与TTA效率之间的关系。 研究结果表明: 降低蒽2-位取代基团的吸电子能力, 能有效提高发光剂的三线态能级水平, 从而减小发光剂与敏化剂的三线态能级差, 增大发光剂的三线态与单线态能级差, 提高发光剂与敏化剂之间的TTET效率、 发光剂的TTA效率, 进而提高体系的TTA上转换效率。 该工作为开发新型、 高效的发光剂分子提供了一种简单、 可行的设计思路。
三线态-三线态湮灭 上转换  取代基团 构效关系 Triplet-triplet annihilation Upconversion Anthracene Substituent group Structure-perfomance relationship 
光谱学与光谱分析
2022, 42(3): 802
作者单位
摘要
1 华南理工大学 发光材料与器件国家重点实验室, 广东 广州 510640
2 广州新视界光电科技有限公司, 广东 广州510730
本文报道了一类面向有机电致磷光器件应用的电子传输材料, 其具有易合成纯化、分子量低、玻璃化转变温度高以及经8-羟基喹啉锂(Liq)掺杂, 电子迁移率高等优点。通过1,3-亚苯基, 4,6-二苯基-1,3,5-三嗪-2-基单元与10-(萘基-2-基)-蒽-9-基偶联, 得到分析纯的NaAN-m-TRZ(m/z=611.73)。残留的含溴中间体可以容易地通过柱层析和/或由CH2Cl2重结晶去除, 从而避免了高风险卤代杂质对于OLED稳定性的影响。热分析表明, 其Tg为157 ℃; 在失重率为1%时, 分解温度为353 ℃。根据紫外光电子能谱测量, NaAN-m-TRZ的HOMO能级为-5.76 eV, 其LUMO估算为-2.84 eV。利用空间电荷限制电流模型, 经由质量分数为50% Liq掺杂的NaAN-m-TRZ的电子迁移率高达6.23×10-5~7.19×10-4 cm2·V-1·s-1 @ E = (2~5)×105V·cm-1, 有助于抑制磷光OLED器件中的三重态-极化子湮灭。因此, 基于Liq:NaAN-m-TRZ的单层电子传输层, 顶发射绿光磷光器件展现出高稳定性, 预计寿命t97约为2 567 h @1 000 cd·m-2; 发光效率、功率效率分别为72.2 cd·A-1、81 lm·W-1@1 000 cd·m-2(绿光发光材料为Ir(ppy)2(m-mbppy))。
三嗪  低分子量 玻璃化转变温度 电子迁移率 triazines anthracenes low molecular weight glass transition temperature electron mobility 
液晶与显示
2021, 36(1): 53
作者单位
摘要
苏州科技大学, 绿色印刷纳米光子工程技术研究中心, 江苏省环境功能材料重点实验室, 江苏 苏州 215009
Cu2+是人体正常代谢所必需的微量元素之一, 但是过量的Cu2+会造成代谢紊乱, 进而诱发各种疾病。 长期以来, 铜材料的过度使用和后处理不当导致生活环境中的Cu2+浓度超标, 成为重金属污染物之一, 因此生活环境中Cu2+含量的检测成为人们关注的热点。 基于荧光探针的荧光光谱法由于选择性好、 灵敏度高等优点被广泛应用于离子检测领域。 利用荧光探针分子与待检测离子可发生选择性的弱相互作用, 研究者们探索并设计了诸多可用于Cu2+检测的荧光探针。 然而普通的荧光探针由于灵敏度较差或选择性不理想等问题缺乏实际应用价值。 设计并合成了一种新的化学型荧光探针分子9,10-二(3’-羟基-4’-亚甲胺氨基硫脲苯基)蒽(b-HTPA)。 该探针分子通过与Cu2+的络合作用, 改变自身的电子排布结构, 使得其荧光性能发生显著变化, 由此对Cu2+产生灵敏的响应。 通过上、 下转换荧光光谱来研究b-HTPA对Cu2+检测的各项性能, 并结合拟合计算得出最终结果。 选择性研究结果表明, 相比其他13种金属阳离子, Cu2+对b-HTPA荧光猝灭效果最为显著, 空白探针分子荧光与加入Cu2+后的荧光强度比可达150∶1。 灵敏性研究结果表明, b-HTPA对Cu2+的最低检测限为2.78×10-7 mol·L-1, 远低于中国卫生部《生活饮用水卫生标准》(GB5749—2006), 表现出良好的荧光响应灵敏性和理想的最低检测限。 响应时间测试结果表明, b-HTPA与Cu2+在0~2 min时间范围内反应速率最大, 并在约10 min后反应完全, 说明b-HTPA在对Cu2+检测中可以短时间产生响应, 降低实际应用中的检测时间和周期。 还使用八乙基卟啉钯(PdOEP)作为光敏剂, 以b-HTPA为湮灭剂, 利用上转换荧光光谱对b-HTPA/PdOEP/Cu2+体系的灵敏性和检测限进行测试研究。 结果表明, 探针的上转换荧光强度随着Cu2+浓度的增加而降低, 具有良好的响应性, 通过拟合计算, 得出b-HTPA对Cu2+的检测限为3.78×10-6 mol·L-1, 低于《生活饮用水卫生标准》规定的检测下限。 设计合成的新型荧光探针分子9,10-二(3-羟基-4-亚甲胺氨基硫脲苯基)蒽对Cu2+具有高选择性、 高灵敏度和理想的检测限, 且响应速度快, 展现了上转换发光在检测领域具有应用潜力
衍生物 荧光探针 上转换 离子检测 Anthracene derivative Fluorescence probe Up-conversion Cu2+ Cu2+ Ion detection 
光谱学与光谱分析
2019, 39(12): 3769
作者单位
摘要
1 天津农学院工程技术学院, 天津 300384
2 南开大学物理学院光子学中心, 天津 300071
3 天津农学院农业分析测试中心, 天津 300384
传统荧光光谱技术已被用于土壤中多环芳烃(PAHs)的检测, 但由于土壤体系的复杂性、 PAHs污染物的多样化和微量化, 传统的荧光光谱技术无法有效提取土壤中PAHs的特征信息。 为了解决上述问题, 提出并建立一种基于二维相关荧光谱土壤中多环芳烃的检测方法。 以土壤中典型的多环芳烃蒽和菲为研究对象, 配置38个蒽菲混合标准土壤样品(蒽和菲的浓度范围均为0.000 5~0.01 g·g-1), 在激发波长265~340 nm, 发射波长350~500 nm范围内采集了所有样品的三维荧光谱。 以激发波长为外扰, 对外扰变化的动态一维荧光谱进行相关计算, 得到每一样品的同步二维相关荧光谱。 研究了浓度均为0.005 g·g-1蒽菲混合土壤样品的三维荧光谱和同步二维相关荧光谱特性, 在同步谱主对角线398, 419, 444和484 nm处存在自相关峰, 其中, 398和484 nm荧光峰来自土壤中的菲, 419和444 nm荧光峰来自土壤中的蒽; 在主对角线外侧, 蒽和菲两组荧光峰之间存在负的交叉峰, 进一步验证了其来源不同; 同时, 在(408, 434) nm和(434, 467) nm处出现交叉峰, 其中408和434 nm荧光峰来自土壤中的菲, 467 nm荧光峰来自土壤中的蒽。 指出与三维荧光谱表征的信息相比, 二维相关荧光谱不仅能提取更多的特征信息(408和467 nm的特征峰在三维荧光谱中未被表征), 而且还能提供荧光峰之间的相互关系, 对其来源进行有效解析。 在上述研究二维相关荧光谱特性的基础上, 基于同步相关谱矩阵(38×151×151)建立了定量分析土壤中蒽和菲污染物浓度的多维偏最小二乘(N-PLS)模型, 对蒽的校正和预测相关系数分别为0.986和0.985, 校正均方根误差(RMSEC)和预测均方根误差(RMSEP)分别为4.33×10-4和5.55×10-4 g·g-1; 对菲的校正和预测相关系数分别为0.981和0.984, RMSEC和RMSEP分别为5.20×10-4和4.80×10-4 g·g-1。 为了比较, 基于三维荧光光谱矩阵(38×16×151)建立了定量了分析土壤中蒽和菲的N-PLS模型, 对蒽的校正和预测相关系数分别为0.981和0.972, RMSEC和RMSEP分别为5.09×10-4和6.74×10-4 g·g-1; 对菲的校正和预测相关系数分别为0.957和0.956, RMSEC和RMSEP分别为7.36×10-4和7.77×10-4 g·g-1。 指出, 对于土壤中的蒽和菲检测, 基于二维相关荧光谱的N-PLS模型的相关系数r, RMSEC和RMSEP都要优于基于三维荧光谱的N-PLS模型。 研究结果表明: 所提出和建立的方法—二维相关荧光谱直接检测土壤中PAHs污染物不仅可行, 而且能提供更好的分析结果。 该研究为激光诱导荧光结合相关谱技术现场直接检测土壤中多环芳烃污染物提供了理论和实验基础, 具有较好的应用前景。
土壤 多环芳烃 二维相关荧光谱   Soil Polycyclic aromatic hydrocarbons(PAHs) Two-dimensional (2D) correlation fluorescence spec Anthracene Phenanthrene 
光谱学与光谱分析
2019, 39(3): 818
作者单位
摘要
1 信阳师范学院 化学化工学院, 河南 信阳 464000
2 有机电子与信息显示国家重点实验室培育基地, 信息材料与纳米技术研究院, 江苏先进生物与化学制造协同创新中心, 南京邮电大学, 江苏 南京 210023
3 中国石油大学(华东) 理学院, 山东 青岛 266580
合成了一种具有深的HOMO (-6.15 eV)分子轨道和高三线态能级(T1, 2.82 eV)的新型化合物10-(2-螺-9,9′-氧杂蒽芴基)吩噻嗪(SFXPz)。因其宽的能带结构(Eg,4.22 eV)和深的HOMO能级而有望制备高效蓝色有机电致磷光器件。热重分析和差热扫描曲线表明, 该化合物具有良好的热稳定性(Td,259 ℃)和高的形态稳定性(Tg,206 ℃)。完全相互分离的HOMO和LUMO轨道有利于阻止分子内能量反转。SFXPz的紫外吸收峰分别位于230,260,292和310 nm左右; 其荧光光谱两个发射峰分别位于311, 324 nm左右。此外, 该化合物的分子结构经LC-MS、1H NMR和13C NMR进行了详细表征。
螺-9 9′-氧杂 吩噻嗪 深HOMO 构效关系 空间位阻 spiro[fluorene-9 9′-xanthene] phenothiazine deep HOMO structure-property relationships steric hindrance 
发光学报
2019, 40(1): 45
作者单位
摘要
1 苏州科技大学化学生物与材料工程学院, 环境功能材料省重点实验室, 江苏 苏州 215009
2 山东大学晶体材料国家重点实验室, 山东 济南 250100
弱光上转换是基于三线态-三线态湮灭机制将低能量(长波长)的光转换为高能量(短波长)光的一种现象, 是通过光敏剂与发光剂之间能量转移实现的。 针对当前上转换体系中的光敏剂研究备受关注, 而对于同等重要作用的发光剂的研究甚少的现状, 利用Suzuki偶联反应制备了两个新的杂环取代蒽衍生物: 9, 10-二(3-呋喃)蒽(DFA)和9, 10-二(3-噻吩)蒽(DTA)并通过结构表征; 以9, 10-二杂环取代蒽为发光剂、 四苯基卟啉钯衍生物(PdTPPMe和PdTPPCOOH)为三线态光敏剂, 研究所构成的光敏剂/发光剂双组分体系中, 三线态-三线态能量转移效率(kQ)、 发光剂的延迟荧光寿命(τDF)及发光剂荧光量子产率(Φf)等因素对上转换效率(ΦUC)的影响。 结果表明, 高效三线态-三线态能量效率(ΦTTT)、 快速延迟荧光寿命和大荧光量子产率将有利于提高上转换效率。 进一步研究发现, 含氧发光剂(DFA)与含羧基的光敏剂(PdTPPCOOH)之间可借助氢键发生有效耦合, 有利于光敏剂与发光剂之间的三线态能量转移, 导致弱光上转换效率显著提高。 在半导体激光器(532 nm, 70 mW·cm-2)激发下获得强的绿-转-蓝上转换效率最大可达10.11%。 所获得的绿-转-蓝上转换荧光可使Pt/WO3复合半导体受激; 产生氧自由基并可促使香豆素转化为7-羟基香豆素。
10-二杂环取代 弱光上转换 三线态-三线态能量转移 延迟荧光 三线态-三线态湮灭 9 9 10-diheterocyclicanthracene Low-power upconversion Triplet-triplet energy-transfer Delayed fluorescence Triplet-triplet annihilation 
光谱学与光谱分析
2018, 38(3): 715

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!