杨通 1,2,*王永东 1,2吕鑫 1,2程德文 1,2王涌天 1,2
作者单位
摘要
1 北京理工大学光电学院,北京 100081
2 北京市混合现实与新型显示工程技术研究中心,北京 100081
光学自由曲面具备较高的设计自由度与像差校正能力;全息光学元件具备特有的波前调控特性、选择性、复用性、轻薄性与易加工性。在成像与显示光学系统设计中,将自由曲面与全息光学元件相融合,可以获得较为优秀的系统指标和系统性能,使系统形态更加紧凑、轻便,且得到离轴非对称的新型系统结构。简要介绍了自由曲面光学与全息光学元件的基本原理、光线追迹特性、应用领域等,阐述了自由曲面光学与全息光学元件的融合设计方法,基于对全息光学元件的分类,总结了融合自由曲面光学与全息光学元件的成像与显示光学系统的设计与应用,讨论了两类元件融合设计的限制因素并对未来的发展趋势进行了展望。
自由曲面光学 全息光学元件 融合设计 成像与显示系统 
光学学报
2024, 44(9): 0900001
作者单位
摘要
浙江理工大学 物理系 浙江省光场调控技术重点实验室,杭州 310018
为克服非相干光源照明条件下基于全息光学元件的视网膜投影显示系统存在的色散、出瞳小、无法获得单眼调焦深度信息等局限,提出了一种基于双全息光学元件的3D视网膜投影显示器。用全息光学元件取代玻璃透镜,用发光二极管取代激光。用反射型体全息光栅和反射型体全息透镜构成的光学结构对系统的色散进行补偿,获得了清晰的图像,系统分辨率达到11.6 lp/mm。结合双全息光学元件结构,利用时分复用技术和角度复用技术实现了具有密集视点的3D视网膜投影显示。该结构可有效扩展系统的出瞳,解决视网膜投影显示系统出瞳小的问题。同时在0.45~2.0 m的深度范围内,实现具有单眼调焦深度信息的真3D显示,显示范围覆盖人眼的辐辏调焦响应敏感范围,可有效缓解辐辏调焦矛盾引起的眩晕和视觉疲劳问题。该系统结构紧凑、价格便宜且避免了散斑噪音和安全隐患,具有良好的应用前景。
视网膜投影 近眼显示 时分复用 全息光学元件 色散 Retinal projection Near-eye display Time division multiplexing Holographic optical element Dispersion 
光子学报
2023, 52(6): 0611002
梅宇 1,2彭飞 2孙明 1郑华东 1[ ... ]夏新星 1,2,*
作者单位
摘要
1 上海大学机电工程与自动化学院,上海 200444
2 光电控制技术重点实验室,河南 洛阳 471000
基于全息波导的增强现实近眼显示技术可以直接为用户双眼提供虚实融合的图像信息,形态相对便携,近年来发展较为迅速。但目前报道的全息波导近眼显示多采用平板波导结构,一般需额外添加曲面护目镜,系统体积相对较大。因此提出基于柱面全息波导的增强现实近眼显示方法,实现了近眼显示从传统平板全息波导形态到曲面类型全息波导的拓展。提出柱面全息波导的全息曝光制备方法并制备柱面全息波导,搭建柱面全息波导近眼显示平台实验系统,实现了出瞳大小约10 mm,单目视场角约24°的增强现实显示效果,将为曲面波导与曲面护目镜的结合提供技术基础。
柱面波导 全息波导 全息光学元件 近眼显示 头盔显示器 
激光与光电子学进展
2022, 59(20): 2011012
作者单位
摘要
苏州大学光电科学与工程学院,江苏 苏州 215006
增强现实(AR)显示是新型显示技术的一个重要发展方向,也是“元宇宙”的硬件入口之一。裸眼AR-3D显示在车载、教育、医疗等领域具有广泛的应用需求,因此受到学者和产业专家的密切关注。回顾了裸眼AR-3D显示技术,主要包括基于几何光学元件、全息光学元件、像素化衍射光学元件等AR-3D显示技术的发展现状,阐述了不同技术的基本原理,分析了现有技术存在的挑战,并对其未来的发展进行了展望。裸眼AR-3D显示将逐步改变人们的信息获取方式。
成像系统 增强现实显示 3D显示 全息光学元件 像素化衍射光学元件 
激光与光电子学进展
2022, 59(20): 2011004
作者单位
摘要
浙江大学 光电科学与工程学院,浙江 杭州 310027
为了实现低串扰、全分辨、多视点的三维显示效果,搭建了多指向型背光源的三维显示系统。本系统由人眼追踪模块获取双目位置并反馈到多指向型背光源和液晶显示屏,多指向型背光源和液晶显示屏协同时序产生快速切换的左右眼视差图像。由于人眼的视觉暂留效应,观看者可感知到三维图像。多指向型背光源主要由一列柱面光源和体全息光学器件实现,不同柱面光源经体全息光学器件将产生不同方向的衍射光束。为了改善本系统显示不均匀现象,提出了双LED式和扩散屏式两种方法。实验结果表明:本系统可提供全分辨的三维图像,且均匀度提高至80%,平均串扰值低至2.75%,实现了25个显示视点,满足了三维显示对串扰、分辨率、均匀度等方面的要求,观看者的视觉体验大幅提升。
三维显示 多指向型背光源 全息光学元件 three-dimensional display multi-directional backlight holographic optical element 
液晶与显示
2022, 37(5): 598
作者单位
摘要
四川大学电子信息学院, 四川 成都 610065
为了提升全息光学元件集成成像3D显示的离屏距离, 提出了一种采用计算全息波前设计, 对集成成像显示时的每个像素发散角进行精细的调控, 来实现增大3D显示的离屏距离的方法。通过对设计波前进行计算机仿真得到了66.0 mm的连续3D景深, 基于空间光调制器的光学重建实验实现了140.0 mm的集成成像离屏距离和75.0 mm的连续景深3D显示。该方法可以为基于全息光学元件的集成成像3D显示提供一种很好的离屏、3D分辨率增强和景深增强解决方案。
集成成像 3D显示 离屏显示 波前设计 全息光学元件 integral imaging 3D display off-screen display wavefront design holographic optical element 
光学与光电技术
2021, 19(4): 24
作者单位
摘要
1 浙江工业大学 理学院应用物理系, 浙江 杭州 310023
2 杭州博源光电科技有限公司, 浙江 杭州 310023
基于全息光学理论分析了全息光学元件的高斯成像性质, 包括光焦度、成像位置、衍射效率以及作为光纤光谱仪光栅元件的可行性, 并以全息光栅的成像理论以及光谱仪工作原理为基础, 设计了光谱仪器光学系统的各个参数, 通过Zemax软件的仿真、像质评价及优化, 得出最终的参数和模拟结果。所使用的全息光栅记录波长为575 nm, 记录光束之间的夹角为10°, 一束为平面波, 一束为球面波, 焦距40 mm,使用+1级衍射光, 光栅孔径为10 mm。光谱仪的工作波长范围为400 nm~800 nm, 体积140 mm*30 mm*40 mm, 谱面展宽29.1 mm。通过在光学平台上搭建光路, 利用已研发完成的电路系统及光谱仪软件, 针对汞灯光谱进行了试验, 光谱分辨率优于8 nm, 测量得到的汞灯光谱与标准汞灯光谱一致, 表明了所设计的基于全息元件的光纤光谱仪光学系统是可行的。
全息光学元件 光纤光谱仪 Zemax仿真 光学设计 holographic optical elements fiber spectrometer Zemax simulation optical design 
应用光学
2015, 36(1): 46
作者单位
摘要
厦门大学物理系, 福建 厦门 361005
在折叠紧凑匹配型全息瞄准器的光学系统基础上设计了一种新型潜式激光全息瞄准器。瞄准器的核心部分是由两个衍射匹配的全息光学元件和光学拐角辅助系统组成。阐述了潜式全息瞄准器的原理、设计方案及制作方法。通过实验与分析说明了该系统能实现拐弯射击的功能,达到隐蔽射击的效果。
全息 全息瞄准器 潜式光学系统 全息光学元件 
中国激光
2014, 41(6): 0609005
作者单位
摘要
1 南京理工大学理学院, 江苏 南京 210094
2 南京理工大学电子工程与光电技术学院, 江苏 南京 210094
介绍了全息瞄准器的工作原理、特点及应用情况。对全息瞄准器中全息片的再现光束角度在水平和竖直方向微小偏移对“十”字叉虚像偏移角的影响进行了研究,给出了理论分析和实验测量的曲线结果,两者吻合得很好。对全息片的再现光波长漂移对“十”字叉虚像偏移角的影响也进行了定量分析,该分析结果为补偿光路的设计提供了依据。
全息 全息瞄准器 全息光学元件 角度偏移 虚像漂移 波长漂移 
中国激光
2011, 38(10): 1009001
作者单位
摘要
中国科学院 光电技术研究所微细加工国家重点实验室,四川 成都 610209
基于全息光学成像理论,提出了一种用于光纤耦合输出多波长激光的合束方法。该方法具有结构简单、合束效率高的特点。结合编程计算,设计了离轴型全息光学元件,给出了该元件的相位分布,并通过仿真软件Zemax和衍射的角谱理论对合束光束的发散角和光束质量进行了计算。结果表明,对635,808,975 nm 3种波长的光纤耦合输出激光进行合束,光束质量因子M2由23.5增加到47.9,理论效率95%。
激光技术 全息光学元件 衍射 多波长激光合束 
中国激光
2010, 37(7): 1734

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!