作者单位
摘要
浙江理工大学 物理系 浙江省光场调控技术重点实验室,杭州 310018
为克服非相干光源照明条件下基于全息光学元件的视网膜投影显示系统存在的色散、出瞳小、无法获得单眼调焦深度信息等局限,提出了一种基于双全息光学元件的3D视网膜投影显示器。用全息光学元件取代玻璃透镜,用发光二极管取代激光。用反射型体全息光栅和反射型体全息透镜构成的光学结构对系统的色散进行补偿,获得了清晰的图像,系统分辨率达到11.6 lp/mm。结合双全息光学元件结构,利用时分复用技术和角度复用技术实现了具有密集视点的3D视网膜投影显示。该结构可有效扩展系统的出瞳,解决视网膜投影显示系统出瞳小的问题。同时在0.45~2.0 m的深度范围内,实现具有单眼调焦深度信息的真3D显示,显示范围覆盖人眼的辐辏调焦响应敏感范围,可有效缓解辐辏调焦矛盾引起的眩晕和视觉疲劳问题。该系统结构紧凑、价格便宜且避免了散斑噪音和安全隐患,具有良好的应用前景。
视网膜投影 近眼显示 时分复用 全息光学元件 色散 Retinal projection Near-eye display Time division multiplexing Holographic optical element Dispersion 
光子学报
2023, 52(6): 0611002
作者单位
摘要
浙江理工大学 物理系 浙江省光场调控技术重点实验室,杭州 310018
为提升光场图像的渲染效率,提出一种基于共轭透视相关相机的光场图像渲染算法并搭建了相应的光场显示系统。利用共轭透视相机实现了深度正确的光场图像的一步渲染,从而省去了图像编码过程。同时利用相邻共轭相机之间的透视相关性减少重复计算,加速了渲染过程。对比传统算法,该算法并行处理能力强,非常适合利用图形处理硬件进行加速处理。利用中央处理器和图形处理器混合编程技术搭建了获取光场图像的渲染管线。对比测试结果表明,算法对视点数目不敏感,尤其适合高密度视点的光场图像的渲染。而且所渲染的视点越多,效率提升越明显。该算法还可以有效地兼容计算机图形学中的纹理贴图、光照等技术实现逼真场景的渲染。为验证算法的正确性,搭建了一套光场显示系统,利用所渲染的光场图像实现了虚拟场景的3D显示,获得了良好的3D立体效果。
光场显示 光场图像 透视相关性 渲染管线 计算机图形学 Light field display Light field image Perspective coherence Rendering pipeline Computer graphics 
光子学报
2023, 52(4): 0411002
作者单位
摘要
浙江理工大学 物理系 浙江省光场调控技术重点实验室,杭州 310018
为克服传统视网膜投影显示技术存在的出瞳小、无法获得单眼调焦深度信息的局限,提出了一种基于麦克斯韦视图的分区时分复用3D视网膜投影显示技术。根据人眼视觉特性将虚拟场景分为边缘背景区域和中心注视区域:对中心注视区域采用时分复用的3D视网膜投影显示技术,实现了具有单眼调焦深度信息的真3D显示,同时增大了出瞳面积。对边缘背景区域采用短焦目镜和液晶显示器件实现了大视角显示。利用半透半反镜实现了边缘和中心区域的图像融合。构建了一套基于LED阵列、数字微镜器件、液晶显示器等光电器件的实验显示系统,实现了大出瞳、宽视角的真3D视网膜投影显示,验证了技术方案的可行性。
视网膜投影 3D显示 麦克斯韦视图 时分复用 Retinal projection 3D display Maxwellian view Time division multiplexing 
光子学报
2022, 51(5): 0511001
作者单位
摘要
1 浙江师范大学 LED芯片研发中心, 浙江 金华 321004
2 发光学与应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
通过分别生长核层与壳层制备出了ZnO/CuO核壳结构的纳米线。形貌和结构分析表明,ZnO核为单晶纳米线而CuO则以多晶形式覆盖在核层表面上。光致发光(PL)研究表明,ZnO纳米线PL强度随CuO壳层厚度的变化而变化。当壳层比较薄时ZnO的PL强度增大,这主要是由于CuO壳层对ZnO核层的修饰减少了表面态,而当壳层厚度增加到一定程度时,ZnO的PL强度不再变化,这主要是由于在核壳结构中形成了type-I型结构的原因。我们对这一现象做了详细的讨论。
核壳结构纳米线 光致发光性质 type-I 型结构 ZnO/CuO ZnO/CuO core/shell nanowires photoluminescence properties type-I band alignment 
发光学报
2012, 33(3): 280

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!