发光学报, 2012, 33 (3): 280, 网络出版: 2012-03-17  

ZnO/CuO核壳结构纳米线光致发光性能与CuO壳层厚度的关系

Relationship Between Photoluminescence Properties of ZnO/CuO Core/Shell Nanowires and The Thickness of CuO Shells
作者单位
1 浙江师范大学 LED芯片研发中心, 浙江 金华 321004
2 发光学与应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
摘要
通过分别生长核层与壳层制备出了ZnO/CuO核壳结构的纳米线。形貌和结构分析表明,ZnO核为单晶纳米线而CuO则以多晶形式覆盖在核层表面上。光致发光(PL)研究表明,ZnO纳米线PL强度随CuO壳层厚度的变化而变化。当壳层比较薄时ZnO的PL强度增大,这主要是由于CuO壳层对ZnO核层的修饰减少了表面态,而当壳层厚度增加到一定程度时,ZnO的PL强度不再变化,这主要是由于在核壳结构中形成了type-I型结构的原因。我们对这一现象做了详细的讨论。
Abstract
ZnO/CuO one-dimensional core/shell nanowires have been synthesized by sequential growth of core and shell, respectively. Phase and structural analyses reveal that the ZnO core has single crystalline phase whereas the CuO shell has polycrystalline phase covering on the surface of the core. The photoluminescence (PL) properties of ZnO nanowires change with the CuO shell thickness. The photoluminescence intensity increases when the shell is very thin, which is attributed to the surface modification by CuO shell. When the shell gets thicker, the intensity of the photoluminescence does not change any more because a type-I band alignment is formed between the core and shell. The experimental result is discussed.
参考文献

[1] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292(5523):1897-1899.

[2] Allam N K, Shankar K, Grimes C A. A general method for the anodic formation of crystalline metal oxide nanotube arrays without the use of thermal annealing [J]. Adv. Mater., 2008, 20(20):3942-3946.

[3] Wang X D, Song J H, Liu J, et al. Direct-current nanogenerator driven by ultrasonic waves [J]. Science, 2007, 316(5821):102-105.

[4] Banerjee D, Jo S H, Ren Z F. Enhanced field emission of ZnO nanowires [J]. Adv. Mater., 2004, 16(22):2028-2032.

[5] Zhang H, Yang D, Ma X, et al. Synthesis and field emission characteristics of bialayered ZnO nanorod array prepared by chemical reaction [J]. J. Phys. Chem. B, 2005, 109(36):17055-17059.

[6] Yang J L, An S J, Park W I, et al. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition [J]. Adv. Mater., 2004, 16(18):1661-1664.

[7] Zhao X H, Wang P, Li B J. CuO/ZnO core/shell heterostructure nanowire arrays: Synthesis, optical property, and energy application [J]. Chem. Comm., 2010, 46(23):6768-6770.

[8] Nair M T S, Guerrero L, Arenas O L, et al. Chemically deposited copper oxide thin films: Structural, optical and electrical characteristics [J]. Appl. Surf. Sci., 1999, 150(1-4)143-151.

[9] Cui J B, Gibson U J. A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells [J]. J. Chem. Phys. C, 2010, 114(14):6408-6412.

[10] Wang M, Wang Y, Li Jingbo. ZnO nanowire arrays coating on TiO2 nanoparticles as composite photoanode for a high efficiency DSSC [J]. Chem. Comm., 2011, 47(40):11246-11248.

[11] Wang R C, Lin H Y. ZnO-CuO core-shell nanorods and CuO-nanopaticle-ZnO-nanorod intergrated structures [J]. Appl. Phys. A, 2009, 95(3):813-818.

[12] Zhu Y W, Sow C H, Yu T, et al. Co-synthesis of ZnO-CuO nanostructures by directly heating brass in air [J]. Adv. Func. Mater., 2006, 16(18):2415-2422.

[13] Li J, Wang L W. Comparison between quantum confinement effects of quantum wires and dots [J]. Chem. Mater., 2004, 16(21):4012-4015.

[14] Kim S, Fisher B, Eiser H J, et al. Type-Ⅱ quantum dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(core/shell) heterostructures [J]. J. Am. Chem. Soc., 2003, 125(38):11466-11467.

[15] Kumar S, Jones M, Lo S S, et al. Nanorod heterostructures showing photoinduced charge separation [J]. Small, 2007, 3(9):1633-1639.

[16] Ivanov S A, Piryatinski A, Nanda J, et al. Type-Ⅱ core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties [J]. J. Am. Chem. Soc., 2007, 129(38):11708-11719.

[17] Zhong H Z, Scholes G D. Shape tuning of type Ⅱ CdTe-CdSe colloidal nanocrystal heterostructures through seeded growth [J]. J. Am. Chem. Soc., 2009, 131(26):9170-9191.

[18] He J, Lo S S, Kim J, et al. Control of exciton spin relaxation by electron-hole decoupling in type-Ⅱnanocrystal heterostructures [J]. Nano. Lett., 2008, 8(11):4007-4013.

[19] Milliron D J, Hughes S M, Cui Y, et al. Colloidal nanocrystal heterostructures with linear and branched topology [J]. Nature, 2004, 430(6996):190-195.

孟秀清, 赵东旭, 吴锋民, 方允樟, 李京波. ZnO/CuO核壳结构纳米线光致发光性能与CuO壳层厚度的关系[J]. 发光学报, 2012, 33(3): 280. MENG Xiu-qing, ZHAO Dong-xu, WU Feng-min, FANG Yun-zhang, LI Jing-bo. Relationship Between Photoluminescence Properties of ZnO/CuO Core/Shell Nanowires and The Thickness of CuO Shells[J]. Chinese Journal of Luminescence, 2012, 33(3): 280.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!