蔡心悦 1周杨 1,2,3,*胡校飞 1,2吕亮 1,2,3[ ... ]彭杨钊 1
作者单位
摘要
1 信息工程大学地理空间信息学院,河南 郑州 450001
2 智慧中原地理信息技术河南省协同创新中心,河南 郑州 450001
3 时空感知与智能处理自然资源部重点实验室,河南 郑州 450001
4 河南建筑职业技术学院,河南 郑州 450001
针对小目标占有像素少导致检测精确率低的问题,提出一种基于超分辨率重建的小目标检测算法。首先,通过图像预处理对高分辨率图像分块并筛选出含有目标的子图像;其次,构建超分辨率锐化增强模块,引入锐化图像和锐化损失,以获得边缘更清晰的高分辨率子图像;然后,采用多尺度锐化目标检测模块检测目标,该模块添加边缘锐化模型,在深层特征层中进一步锐化图像边缘,弥补深层卷积对细节的损失;最后,根据子图像编号将小目标检测结果回归到原图像中,完成小目标图像检测。在PASCAL VOC数据集和COCO 2017数据集上的实验结果表明,所提算法的平均精确率(mAP)分别为85.3%和54.0%,对COCO数据集的小目标检测精确率为43.5%,高于次优值9.7个百分点。因此,所提算法可以有效减少小目标漏检的次数,提高检测精确率。
图像处理 小目标检测 分辨率增强 卷积神经网络 多尺度特征融合 边缘锐化 
激光与光电子学进展
2023, 60(12): 1210002
作者单位
摘要
1 首都师范大学 物理系 北京市太赫兹波谱与成像重点实验室 太赫兹光电子学教育部重点实验室,北京 100048
2 北京理工大学 信息与电子学院 毫米波太赫兹技术北京市重点实验室,北京 100081
3 深圳光启尖端技术有限责任公司 光启银星基地技术室,广东 深圳 518000

为了提高太赫兹成像探测的纵向分辨率,提出了一种基于连续小波的经验模态分解的纵向分辨率增强新方法。首先先对样品的频域信号进行连续小波变换处理,获得其相对应的连续小波变换系数;然后对获得的连续小波系数进行经验模态分解,将其自适应地分解为一系列的本征模式函数和一个残差信号,并提取其中第一阶本征模式函数为成像参数进行三维重构,获得最终的三维本征模函数图像,以此来提高太赫兹检测图像的纵向分辨率。为验证方法的有效性,采用150 ∼220 GHz高频太赫兹调频雷达成像系统分别对两种含内部脱胶缺陷的夹层结构复合材料进行成像检测并利用提出的方法进行处理,得到了纵向分辨率被有效增强,清晰度被有效提高的检测结果图像,这为未来的太赫兹计算机断层扫描成像和太赫兹无损检测应用研究提供了新的思路。

太赫兹成像 连续小波变换 经验模态分解 纵向分辨率增强 terahertz imaging continuous wavelet transform empirical mode decomposition longitudinal resolution enhancement 
红外与毫米波学报
2022, 41(4): 710
作者单位
摘要
四川大学 电子信息学院,四川 成都 610065
随着3D显示被应用到**医疗等尖端领域,高分辨率的3D图像变得尤为重要。然而,集成成像的3D显示性能受制于2D显示屏的分辨率。为了突破2D显示屏的分辨率限制,本文提出了基于回返器和反射偏振片的集成成像3D显示装置。该装置将显示器上的微图像阵列(elemental image array,EIA)通过反射型偏振片分离成偏振方向正交的两束光线,回返器、四分之一波片和反射型偏振片分别将两束偏振光反射,并沿着像素的对角线方向以2/2个像素错位叠加,形成一个具有更小像素单元和更多像素数量的高分辨率EIA。根据两个偏振EIA和叠加的高分辨率EIA之间的像素索引关系,反向计算出偏振EIA的像素值。实验结果表明,该系统不仅可以重构出高分辨率的3D图像,还减弱了像素间的黑网格。
分辨率增强 集成成像 偏振复用 回返器 反射偏振片 resolution enhancement integral imaging polarization multiplexing retro-reflector reflective polarizer 
液晶与显示
2022, 37(5): 555
陈宝钦 1,2,*
作者单位
摘要
1 中国科学院微电子研究所,北京 100029
2 中国科学院大学集成电路学院,北京 100049

当今世界离不开信息产业,信息产业离不开半导体集成电路芯片制造技术,即微电子技术。集成电路芯片制造工艺中最关键的就是光刻技术。光刻技术开始于1958年美国德克萨斯公司试制的世界上第一块平面集成电路,在短短的60年中,光刻分辨率极限一次又一次被突破,创造了人间奇迹。作为微电子技术工艺基础的光刻技术与微/纳米加工技术是人类迄今为止所能达到的精度最高的加工技术。光刻加工尺寸从百微米到10 nm,加工手段从钢板尺手术刀照相机到电子束光刻,光源波长从光学曝光到极紫外曝光。集成度提高了约百亿倍,特征尺寸线宽缩小到原来的约1/10000。随着纳米集成电路迅猛发展,光刻技术也从等效摩尔时代进入后摩尔时代。

光刻技术 光学分辨率增强技术 下一代光刻 微纳米加工技术 
激光与光电子学进展
2022, 59(9): 0922031
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室,上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049

光刻机是集成电路制造的核心装备,光刻分辨率是光刻机的重要性能指标。作为提高光刻机分辨率的重要手段,分辨率增强技术可以推动芯片向更高集成度发展。光源掩模联合优化(SMO)通过同时优化光源和掩模图形提高光刻分辨率,是28 nm及以下技术节点必不可少的分辨率增强技术之一。光源与掩模的准确表征是SMO技术的基础,高效的优化算法是对光源和掩模进行优化的核心手段。SMO技术应用于全芯片的前提是进行关键图形筛选。本文回顾了SMO技术的发展历史,并结合本团队对SMO技术的研究,介绍了关键图形筛选方法、光源与掩模表征方法和优化算法的基本原理和国内外的研究进展。

光刻 分辨率增强技术 光源掩模联合优化 
激光与光电子学进展
2022, 59(9): 0922010
作者单位
摘要
北京理工大学光电学院,北京 100081

计算光刻是极大规模集成电路(IC)制造的核心技术之一。随着IC节点的不断下移,对于工艺的要求越来越严苛。计算光刻技术对推进光刻工艺进步做出了巨大贡献。然而,尽管计算机技术的发展为计算光刻技术的进步提供了有力的支持,但是计算光刻速度和精度之间互制的难题,考虑光刻系统、掩模、工艺误差情况下的计算光刻研究,仍需要学术团队与工业研发团队协同攻关。在简单回顾计算光刻的重要里程碑节点的基础上,重点概述作者团队在“先进计算光刻:快速、高稳定计算光刻”的研究进展,包括矢量计算光刻、快速计算光刻和多目标-高稳定矢量计算光刻。最后,对未来计算光刻技术的发展做出了展望,并期望本文能对我国集成电路领域的研发人员和工程师有所帮助。

光刻 计算成像 逆向光刻 计算光刻 分辨率增强技术 
激光与光电子学进展
2022, 59(9): 0922009
马旭 1,*张胜恩 1潘毅华 1张钧碧 1[ ... ]韦亚一 2,3,**
作者单位
摘要
1 北京理工大学光电学院,光电成像与系统教育部重点实验室,北京 100081
2 中国科学院微电子研究所先导工艺研发中心,北京 100029
3 中国科学院大学微电子学院,北京 100049

光刻是将集成电路器件的结构图形从掩模转移到硅片或其他半导体基片表面上的工艺过程,是实现高端芯片量产的关键技术。在摩尔定律的推动下,光刻技术跨越了90~7 nm及以下的多个工艺节点,逐步逼近其分辨率的物理极限。同时,光刻系统的衍射受限特性,以及各类系统像差、误差和工艺偏差,都会严重影响光刻成像精度。此时,必须采用计算光刻技术来提高光刻成像分辨率和图形保真度。计算光刻是涉及光学、半导体技术、计算科学、图像与信号处理、材料科学、信息学等多个专业的交叉研究领域。它以光学成像和工艺建模为基础,采用数学方法对光刻成像过程进行全链路的仿真与优化,实现成像误差的高精度补偿,能够有效提升工艺窗口和芯片制造良率,降低光刻工艺的研发周期与成本,目前已成为高端芯片制程的核心环节之一。本文首先简单介绍了计算光刻的前身,即传统的分辨率增强技术,在此基础上介绍了计算光刻的基本原理、模型和算法。之后对光学邻近效应校正、光源优化和光源掩模联合优化三种常用的计算光刻技术进行了综述,总结了相关的研究进展、成果和应用。最后,阐述了计算光刻当前所面临的需求与挑战,并讨论了最新技术进展和未来发展方向。

计算光刻 分辨率增强技术 先进半导体制造工艺 光学光刻 计算光学 光电图像处理 
激光与光电子学进展
2022, 59(9): 0922008
杨欣华 1,2李思坤 1,2,*廖陆峰 1,2张利斌 3[ ... ]王向朝 1,2
作者单位
摘要
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
2 中国科学院大学材料与光电研究中心, 北京 100049
3 中国科学院微电子研究所集成电路先导工艺研发中心, 北京 100029
4 东方晶源微电子科技(北京)有限公司, 北京 100176
提出一种基于深度优先搜索的全芯片光源掩模优化关键图形筛选方法。所提方法采用掩模频谱的投影边界以及增长因子表征掩模的衍射频谱特征。设计了基于深度优先搜索的关键图形筛选算法,实现了全芯片光源掩模优化关键图形筛选,获得了所有关键图形组。相比于现有同类方法,所提方法可以获得覆盖频率分组的所有关键图形组,进而选出更优关键图形组。采用荷兰ASML公司的商用计算光刻软件Tachyon Tflex对所提方法进行了仿真验证,仿真结果表明所提方法获得的工艺窗口优于Tachyon Tflex方法,与现有方法相比,所提方法筛选出的关键图形结果更优。
光学设计 图形筛选 分辨率增强技术 光源掩模联合优化 深度优先搜索 
光学学报
2022, 42(10): 1022002
作者单位
摘要
1 电子科技大学 光电科学与工程学院,四川成都0699
2 中国科学院 物理研究所 松山湖材料实验室,广东东莞5349
基于空间光调制器的无掩膜光刻是光刻技术重要发展方向之一。近年来,随着数字微镜器件芯片集成度与性能的提高,数字微镜器件无掩膜光刻成为一种主要的数字光刻技术。由于可灰度调制的光反射式“数字掩膜”替代了传统光刻中使用的预制物理光掩膜版,该技术极大地简化了光刻制版流程,提高了光刻的灵活性,广泛应用于平面微纳器件、超材料、微流控器件、组织生物研究等领域。从数字无掩膜光刻原理出发,简要介绍了典型匀光照明系统结构与微缩投影系统结构,进而介绍了面向平面光刻的空间分辨率增强技术、灰度光刻技术以及三维微立体光刻技术的进展。最后,列举了几类典型的数字无掩膜光刻应用,并对其发展方向进行了展望。
无掩膜光刻 空间光调制器 数字微镜器件 分辨率增强 灰度光刻 微立体光刻 maskless lithography spatial light modulator digital micromirror device resolution enhancement grayscale lithography micro-stereo lithography 
光学 精密工程
2022, 30(1): 12
王建 1,2刘俊伯 1胡松 1,2,*
作者单位
摘要
1 中国科学院光电技术研究所,四川 成都 610209
2 中国科学院大学,北京 100049
光刻光源优化作为必不可少的分辨率增强技术之一,能够提高先进光刻成像质量。在先进光刻领域,光源优化的收敛效率和优化能力是至关重要的。粒子群优化算法作为一种全局优化算法,自适应控制策略可以提高粒子的全局搜索能力,非线性控制策略可以扩大粒子搜索范围。本文提出一种基于自适应非线性控制策略的粒子群优化算法,将光刻光源优化问题转换成多变量评价函数求解。对简单周期光栅图形和不规则图形进行成像优化仿真,通过粒子群优化算法的全局迭代特性优化光源形貌。利用图形误差(PEs)作为多变量评价函数,对迭代300次的仿真结果进行评价,两种仿真图形的PEs分别降低52.2%和35%。与传统粒子群优化算法和遗传算法相比,该方法不仅能提高成像质量,而且具有更高的收敛效率。
光源优化 光刻 分辨率增强技术 粒子群优化算法 source optimization lithography inverse lithography optimization techniques particle swarm optimization algorithm 
光电工程
2021, 48(9): 210167

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!