作者单位
摘要
国防科技大学前沿交叉学科学院,湖南 长沙 410073
由于受激拉曼散射(SRS)和横模模式不稳定 (TMI) 效应的共同制约,实现高功率输出的同时保持高光束质量存在一定的困难。基于后向同带泵浦方案,在自研30 μm/250 μm常规双包层掺镱光纤中实现了高功率(8.38 kW)、高光束质量 (光束质量因子M2为1.8) 的激光输出。SRS和TMI得到了有效抑制,但功率的进一步提升受限于泵浦功率。
激光器 光纤激光器 同带泵浦 后向泵浦 受激拉曼散射 横模模式不稳定 
光学学报
2022, 42(14): 1436001
高聪 1刘念 1李峰云 1刘玙 1[ ... ]景峰 1
作者单位
摘要
1 中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
2 北京应用物理与计算数学研究所,北京 100094
长距离侧面泵浦激光光纤在泵浦光注入、热管理、非线性抑制等方面具有天然优势,是实现高功率激光输出的有效途径。研制了(1+1)型长距离侧面泵浦激光光纤,采用1018 nm同带泵浦反向注入方式实现了17.4 kW激光输出,斜率效率为82.1%,3 dB线宽为1.3 nm,拉曼抑制比为37.8 dB。研究结果展示了长距离侧面泵浦光纤作为数十千瓦光纤激光放大器增益介质的巨大应用潜力。
光纤激光器 光纤放大器 同带泵浦 侧面泵浦 激光光纤 fiber laser fiber amplifier tandem pump side-pump laser fiber 
强激光与粒子束
2022, 34(5): 051002
作者单位
摘要
1 中国电子科技集团公司第四十六研究所,天津 300220
2 中国工程物理研究院激光聚变研究中心,四川 绵阳 621900
同带泵浦是目前实现高功率光纤激光器的主要技术之一。报道了一种自主研制的同带泵浦掺镱双包层光纤,采用改进的化学气相沉积工艺结合液相掺杂工艺,通过纤芯组分设计和制棒工艺优化,提高了高掺杂光纤纤芯折射率的均匀性。基于所研制的47 μm /400 μm光纤搭建了全光纤化主振荡功率放大器,采用同带泵浦方式,实现了高受激拉曼散射(SRS)抑制比的20.88 kW激光输出,中心波长为1080 nm,斜率效率为82.7%。这是目前国产光纤以同带泵浦方式实现的最高功率。
光纤光学 掺镱双包层光纤 气相/液相掺杂工艺 同带泵浦 
中国激光
2022, 49(7): 0706002
陶蒙蒙 1,2,**叶锡生 1,*叶景峰 2余婷 1[ ... ]陈卫标 1
作者单位
摘要
1 中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室,上海 201800
2 西北核技术研究所激光与物质相互作用国家重点实验室,陕西 西安 710024

对793 nm、1.6 μm和1.9 μm三种不同泵浦波段下千瓦级掺铥光纤激光器的输出特性开展了数值模拟研究。在1 kW输出功率下,对不同泵浦波段的输出效率和热特性进行了对比分析。结果表明,在793 nm泵浦下,受益于交叉弛豫过程,量子效率可超过100%,但是其整体斜率效率依然不高,导致激光器产热严重,废热与输出功率比达80.8%,光纤端面温度也相对较高。在同带泵浦下,激光器效率得到明显提升,尤其是在1.9 μm同带泵浦下,激光器斜率效率达90%以上,废热也得到显著抑制,使用低掺杂光纤时,增益光纤温度整体在50 ℃以内。对同带泵浦下掺铥光纤激光器的功率提升开展了初步估算和数值模拟,估算表明在同带泵浦下,掺铥光纤激光器的功率提升主要受限于受激布里渊散射、模式不稳定、外包层损伤以及光损伤等四个因素。数值模拟结果表明,同带泵浦下热载显著降低,掺铥光纤激光器的功率提升不会受到模式不稳定的影响,而外包层损伤和受激布里渊散射成为主要的限制因素。对于1.6 μm和1.9 μm同带泵浦,在25 μm芯径尺寸下,激光器最高输出功率可分别达5.9 kW和12.7 kW。

激光器 光纤激光器 同带泵浦 热效应 热载 功率提升 
中国激光
2022, 49(1): 0101019
张磊 1,*楼风光 1王孟 1于春雷 1,3[ ... ]巩马理 2
作者单位
摘要
1 中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
2 清华大学精密仪器系, 北京 100084
3 国科大杭州高等研究院, 浙江 杭州 310024
同带泵浦是提升单纤输出能力的有效手段。在传统双包层光纤研究的基础上,为了进一步提高涂覆层的耐受性,本课题组制备了适用于同带泵浦的三包层大模场掺镱光纤,使大部分泵浦光束缚在含氟石英层内传输,大大减轻了泵浦光对低折射率涂层的冲击。基于所研制的三包层光纤搭建了全光纤化主控振荡功率放大器,实现了9010 W激光输出,激光中心波长为1080 nm,斜率效率为80.5%。三包层光纤的使用对万瓦级以上高功率激光光纤的长期可靠运行具有重要意义。
光纤光学 掺镱光纤 三包层光纤 同带泵浦 主振荡功率放大器 
中国激光
2021, 48(13): 1315001
董贺贺 1,2王世凯 2,*王中跃 1,**于春雷 2,***[ ... ]胡丽丽 2
作者单位
摘要
1 南京邮电大学电子与光学工程、 微电子学院, 江苏 南京 210023
2 中国科学院上海光学精密机械研究所高功率激光单元技术实验室, 上海 201800
采用溶胶-凝胶法结合纳米粉体高温烧结工艺制备了Yb-Al、Yb-Al-P和Yb-P三个体系共掺石英玻璃,系统探究了Al 3+和P 5+的含量变化对掺Yb 3+石英玻璃在1018 nm处吸收和荧光性能的影响规律。通过对比不同掺杂体系在1018 nm处的光谱性能发现,随着P 5+掺杂浓度的提高,1030 nm附近的荧光次峰蓝移至1018 nm附近,Yb-P掺杂石英玻璃系列样品在1018 nm处的归一化荧光强度明显优于其他系列。利用Raman光谱结合超低温电子顺磁共振(EPR, 4 K)从原子尺度上对Yb 3+的配位环境进行了精确解析。Al 3+和P 5+的引入使得Yb 3+的配位环境迥异,这与Al 3+、P 5+对Yb 3+在1018 nm处光谱性质的影响规律相符。
材料 掺Yb 3+石英玻璃 1018 nm同带泵浦 光谱性能 稀土离子局域环境 
中国激光
2021, 48(11): 1103001
作者单位
摘要
中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
同带泵浦具有泵浦源亮度高、量子亏损低等优点,是实现光纤激光器功率提升的有效措施。采用稀土螯合物全气相掺杂技术和改进的化学气相沉积工艺(MCVD)制备了适用于同带泵浦的镱掺杂铝磷硅体系光纤。所研制的50/400光纤构建的全光纤结构主振荡功率放大器采用同带泵浦方式,实现了9.82 kW的激光功率输出,激光中心波长为1080.08 nm,3 dB带宽为1.62 nm,斜率效率为86.8%。研究结果表明镱掺杂的铝磷硅光纤激光材料是同带泵浦高功率光纤激光系统的优选增益介质,稀土螯合物全气相掺杂技术和MCVD是获得该种材料的有效手段。
光纤光学 光纤激光器 掺镱石英玻璃光纤 同带泵浦 螯合物气相掺杂技术 
中国激光
2020, 47(3): 0315001
作者单位
摘要
国防科技大学 光电科学与工程学院, 大功率光纤激光湖南省协同创新中心, 长沙 410073
报道了一台基于同带泵浦技术的主振荡功率放大(MOPA)结构超荧光光纤光源。首先利用自行搭建的超荧光种子源获得了半高全宽(FWHM)线宽10.3 nm的宽谱超荧光种子,经光谱滤波得到FWHM线宽1.8 nm的窄谱种子光;种子光经二级预放大器放大至104.4 W后注入主放大器;主放大器最高输出功率3.14 kW,最高输出功率时光光转换效率80.74%,光谱FWHM线宽4.68 nm,光束质量因子为1.59。进一步提高系统泵浦功率有望获得更高功率输出。
超荧光光纤光源 同带泵浦 主振荡功率放大 superfluorescent fiber source tandem pumped master oscillator power amplifier 
强激光与粒子束
2017, 29(11): 110101
作者单位
摘要
1 中国科学院上海光学精密机械研究所 空间激光信息技术研究中心, 上海 201800
2 沈阳师范大学 物理科学与技术学院, 辽宁 沈阳 110034
为探索同带泵浦掺杂Ho3+激光晶体1.2 μm波段红外激光输出, 采用掺杂浓度为1 at%的Ho3+: LLF激光晶体作为激光增益介质, 应用两种典型准三能级理论模型, 计算了Ho3+在5I6和5I8 能级间跃迁辐射1.19 μm激光的阈值功率, 分析了泵浦光和激光束腰半径、激光晶体长度、吸收损耗、腔镜反射率等参量与阈值功率的变化关系, 得出了吸收损耗是影响阈值功率最敏感因素的重要结论, 确定了泵浦阈值功率的范围, 为后续1.2 μm波段红外激光实验研究提供了可靠的理论参考数据.
1.2 μm红外激光 同带泵浦 Ho3+激光晶体 阈值功率 1.2 μm infrared laser in-band pumped Ho3+-doped crystal threshold power 
红外与毫米波学报
2017, 36(1): 20
作者单位
摘要
北京交通大学 电子信息工程学院,北京 100044
采用自制的1 018 nm光纤激光器做泵浦源,建立了全光纤同带泵浦的宽带掺镱超荧光光纤光源实验系统,首次利用同带泵浦对单程前向结构的超荧光产生进行了深入的实验研究。研究结果表明: 基于同带泵浦的掺镱超荧光光源的斜率效率高达88%,半极大全宽度(Full Width at Half Maximum,FWHM) 最宽可以达到14.81 nm。掺镱光纤长度的改变,将影响超荧光光源的最大输出功率、斜率效率及中心波长,随着掺镱光纤长度的增加,最大输出功率和斜率效率下降,中心波长红移。固定光纤长度,改变泵浦功率,随着泵浦功率的增加,超荧光的最大功率和FWHM增加,光谱中心波长偏移很小。在掺镱光纤长度为5.7 m时,超荧光光源的最宽FWHM为14.81 nm,斜率效率在80.3%以上,输出功率的波动小于1%,没有驰豫振荡出现。
超荧光光纤光源 全光纤 同带泵浦 掺镱光纤 宽带 superfluorescent fiber source all-fiber tandem pump Yb-doped fiber broadband 
红外与激光工程
2016, 45(8): 0802001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!