作者单位
摘要
1 东北大学 冶金学院 多金属共生矿生态化冶金教育部重点实验室,沈阳 110819
2 东北大学 轧制技术及连轧自动化国家重点实验室,沈阳 110819
利用电沉积法制备了银基底,考察了焙烧温度对基底形貌和表面增强拉曼散射效应的影响。研究结果表明,制备的电沉积银基底呈主干及两侧分支组成的枝晶状,分支均具有高曲率的尖端,可以产生避雷针效应,增强基底的表面增强拉曼散射性能;对基底进行焙烧处理,在300 ℃时分支尖端开始消失并出现团聚现象,400 ℃时枝晶变得粗大,但有新的球状纳米颗粒生成,可以为表面增强拉曼散射提供新的“热点”。以罗丹明6G为探针分子,考察了制备的银基底在焙烧前后对其拉曼光谱信号的增强作用,发现增强效应随焙烧温度的增加而减小。基底未经焙烧处理时增强因子为1.62×105,当焙烧温度为400 ℃时,其增强因子仍可达到2.16×104,表明焙烧后的银基底仍具备较显著的表面增强拉曼散射效应。将制备的银基底用于1-乙基-3-甲基咪唑氯盐离子液体不同温度下的原位拉曼光谱检测,发现其拉曼光谱信号显著增强。
表面增强拉曼散射 银基底 拉曼光谱 罗丹明6G 增强因子 Surface enhanced Raman scattering Silver substrate Raman spectroscopy Rhodamine 6G Enhancement factor 
光子学报
2022, 51(2): 0229001
作者单位
摘要
中国海洋大学青岛市光学光电子重点实验室,山东 青岛 266100
为了计算纳米粒子大尺寸聚集体的表面局域电磁场分布并快速对其增强效果进行评价,利用软件中脚本语言编写局部亚网格程序来实现对纳米粒子大尺寸聚集体模型的非均匀网格离散,并结合时域有限差分(FDTD)方法实现三种尺寸聚集体模型的电磁场仿真;使用K均值聚类算法对计算出的电场数据进行聚类分析,最终得到能够反映金纳米粒子大尺寸聚集体所有“热点”位置处电磁增强效果的平均增强因子。结果表明,使用亚网格离散的金纳米球二聚体仿真模型后的内存占用减少了81%且仿真速度提高1倍,有效提升FDTD的仿真效率;另外,通过K均值聚类算法并根据三种尺寸的金纳米粒子聚集体电磁数据,可以得到与传统积分法计算的平均增强因子(AEF 1)增减规律相同的增强因子AEF 2。
表面光学 表面增强拉曼基底 纳米粒子大尺寸聚集体 局部亚网格 K均值聚类 平均增强因子 
激光与光电子学进展
2021, 58(21): 2124001
作者单位
摘要
郑州航空工业管理学院材料学院, 郑州 450015
利用化学气相沉积(CVD)法, 以甲烷为碳源在管式炉中合成了单体石墨纤维(MGF)。选取长度为3.426 mm, 顶端球面半径为11.26 μm的单体石墨纤维直立于圆铜片上作为阴极, 以导电ITO玻璃作为阳极, 采用二极管结构在真空室中进行直流场发射测试, 证实MGF的开启场强为0.477 5 V/μm。基于有限元仿真软件ANSYS进行电磁场分析, 计算了MGF在不同电压下的有效发射面积。结果表明, 当电压为5.36 kV时, MGF达到最大发射面积为796.226 μm2, 在实验测量电压范围内, 平均发射电流密度可以达到46.069 A/cm2, 单体石墨纤维具有良好的场发射特性。
单体石墨纤维 场发射 有效发射面积 电流密度 增强因子 monomer graphite fiber field emission effective emission area current density field enhancement factor 
人工晶体学报
2021, 50(5): 866
作者单位
摘要
重庆大学光电技术及系统教育部重点实验室, 重庆 400044
一直以来, 将纳米结构材料用于其表面增强拉曼散射(SERS)时会先测试其吸收光谱, 因为一般研究认为, 纳米结构材料产生SERS的原因是纳米结构材料对于入射光的吸收产生了局域表面等离子体共振(LSPR), 因此我们常把SERS的增强因子随波长变化的曲线等同于吸收光谱曲线。 近年来, 有学者认为两者之间的联系可能是非常间接的, 并且在许多情况下会产生误导。 为了能够阐明两个之间的具体关系, 考虑到银纳米粒子(AgNPs)以其局域表面等离子体共振而显著提高拉曼散射的能力而闻名, 是制备SERS基底的理想纳米材料, 我们从实验和理论两个角度研究了三种不同状态的AgNPs中表面增强拉曼散射的增强因子(EF)、 吸收光谱以及空间的电场分布。 实验上, 利用化学还原法制备了银溶胶(Ag-sol), 并对Ag-sol做了透射电子显微镜(TEM)、 紫外可见分光光度计(UV-Vis)以及拉曼的表征实验, 统计和计算了银溶胶的EF和吸收光谱。 理论上, 利用仿真软件COMSOL Multiphysics建立了不同聚合类型AgNPs的仿真模型, 模拟计算了与实验相对应的EF随波长变化的曲线以及吸收光谱。 结果表明: 表面等离子体共振的空间分布对吸收和最大EF值起着重要的作用; 具有固定位置的共振吸收峰(第一个峰位)主要受“单颗粒类型”效应的影响, 而最大EF处的吸收峰(第二个峰位)由“耦合间隙类型”效应引起的蓝移谐振峰主导, 且最大EF值及第二个吸收峰的峰位会随着粒子的间隙、 偏振角度等因素而变化。 研究表明, AgNps样品的吸收光谱和最大EF曲线之间是部分相关的。
银纳米粒子聚合体 表面增强拉曼散射 增强因子 吸收光谱 Ag nanoparticles aggregates Suface-enhanced Raman scattering Enhancement factor Absorption spectrum 
光谱学与光谱分析
2021, 41(6): 1816
作者单位
摘要
1 华北理工大学药学院,唐山 063210
2 华北理工大学材料科学与工程学院,唐山 063210
3 河北省无机非金属材料重点实验室,唐山 063210
4 唐山市环境功能材料重点实验室,唐山 063210
以八水氧氯化锆(ZrOCl2?8H2O)为原料制备前驱体溶液,采用旋涂工艺制备ZrO2薄膜,并对其进行还原氮化。利用XRD、FE-SEM、UV-Vis-Nir和Raman测试薄膜结构、光学性能及SERS效应。结果表明,还原氮化后薄膜中出现了氮氧化合物,颗粒明显,薄膜厚度约为0.77 μm。薄膜的紫外可见近红外光谱在350~650 nm附近展现出较强的吸收。利用R6G作为探针分子研究了薄膜的SERS效应,结果表明,还原氮化后的氧化锆薄膜拉曼增强效应显著提升,拉曼增强因子为2.479×102。
氧化锆薄膜 还原氮化 表面增强拉曼散射 拉曼增强因子 ZrO2 film reduction and nitridation SERS Raman enhancement factor 
人工晶体学报
2020, 49(9): 1609
徐赵龙 1解研 2,*王迎新 2赵自然 2[ ... ]冯德军 1,***
作者单位
摘要
1 山东大学信息科学与工程学院, 山东 青岛 266237
2 清华大学工程物理系, 北京 100084
3 北京应用物理与计算数学研究所, 北京 100088
太赫兹量子级联激光器(THz-QCL)是用于实现自混合干涉的半导体激光器。利用自混合干涉效应,实验测量了THz-QCL频谱、线宽增强因子以及反馈光耦合系数。搭建了THz-QCL自混合干涉光路,基于THz-QCL驱动电压,获得了具有高信噪比的自混合干涉信号及其随反馈光光程变化的曲线。通过对自混合干涉信号进行解析,准确获得了THz-QCL在不同工作电流和温度下的激射频谱,频谱的分辨率反比于反馈光光程的变化。基于自混合干涉信号,分析得到了THz-QCL的线宽增强因子以及反馈光耦合系数。所实现的自混合干涉测量技术有望发展为物质的太赫兹频谱识别和测量技术。
激光器 太赫兹量子级联激光器 自混合干涉 频谱测量 线宽增强因子 
光学学报
2020, 40(11): 1114003
作者单位
摘要
重庆大学光电技术及系统教育部重点实验室, 重庆 400044
将波导模式下的光子格林函数与分子的量子光学形式结合,理论分析和计算了槽型波导耦合结构中单分子及多分子的拉曼增强因子。以平均增强因子、珀赛尔因子、波导收集百分数为主要性能参数,对独立槽型波导和复合型槽型波导的差异进行对比。结果表明,复合型槽型波导能获得显著更高的拉曼增强因子(相对于槽型波导提高了2~3个数量级),这主要是电场、珀塞尔因子、光物质相互作用体积和拉曼信号收集效率共同增加的结果。
集成光学 波导耦合 增强拉曼 光子格林函数 增强因子 
光学学报
2020, 40(3): 0313001
作者单位
摘要
中北大学电子测试技术重点实验室, 山西 太原 030051
针对激光诱导击穿光谱技术(LIBS)中等离子体的发射光谱增强问题, 提出一种磁场增强LIBS与纳米颗粒增强LIBS(NELIBS)相结合的方法。 采用热蒸发法在样品表面沉积一层直径20 nm的金纳米颗粒。 利用波长为1 064 nm, 最大能量为200 mJ的Nd∶YAG脉冲激光器在室温, 一个标准大气压下对纯铜和黄铜进行诱导击穿。 调整激光能量为30~110 mJ, 分别使用传统LIBS、 磁场增强LIBS、 NELIBS以及两种方法结合对纯铜进行激光诱导击穿, 得到特征谱线(Cu Ⅰ 521.8 nm)的强度增强因子和信噪比, 并对其增强机理进行分析。 在相同环境下使用四种方式对黄铜和纯铜进行诱导击穿以探测样品中的微量元素。 当在样品表面沉淀金纳米颗粒或者将沉淀有金纳米颗粒的样品放在磁场中进行诱导击穿时, 发现纯铜样品的光谱中存在Mg元素的特征谱线Mg Ⅱ 279.569 nm, 黄铜样品的光谱中存在Si元素的特征谱线 Si Ⅰ 251.611 nm。 实验结果表明: 单独施加磁场约束或增加纳米金颗粒均可以有效增强等离子体光谱强度, 但增强效果弱于两种方法结合, 磁场约束对光谱的增强效果弱于NELIBS的增强效果。 当结合NELIBS与磁场约束LIBS时, 谱线增强因子最高可达14.3(Cu Ⅰ 521.8 nm), 相比于磁场增强LIBS和NELIBS, 最大增强因子分别提高了28%和59%。 四种情况中当激光脉冲能量逐渐增大时, 等离子体向外膨胀的强度增大, 磁场产生的洛伦兹力束缚等离子的能力相对减弱, 同时纳米金颗粒对等离子体发射光谱的增强作用被削弱, 谱线强度降低, 等离子体的增强因子逐渐减小后趋于稳定。 通过NELIBS与磁场约束LIBS结合方式, 不仅可以有效提高等离子体的发射谱线强度, 改善光谱信号信噪比, 而且传统LIBS方法中由于谱线强度低、 背景噪声大而无法探测的微量元素可以被探测到, LIBS技术对微量元素的探测能力得到显著提高, 微量元素的探测下限变得更低。 NELIBS与磁场约束LIBS结合的方法具有更高的灵敏度和准确度, 为激光诱导击穿光谱技术的谱线增强方法提供了新的思路, 在该领域具有广阔的应用前景。
纳米金 磁场 增强因子 微量元素 Au-nanoparticles Magnetic field Enhancement factor Trace elements 
光谱学与光谱分析
2019, 39(5): 1599
作者单位
摘要
1 中国计量大学计量测试工程学院, 浙江 杭州 310018
2 中国计量科学研究院, 北京 100029
利用基于时域有限差分法的FDTD Solutions软件建立了镀Ag膜台阶形针尖-Ag纳米粒子活性基底结构的表面/针尖增强拉曼光谱(SERS-TERS)仿真模型, 并在相同的条件下对其他不同类型的针尖和基底的近场电场分布进行数值计算, 验证了所设计的镀Ag膜台阶形针尖和活性基底模型在拉曼散射增强方面的有效性。同时, 针对此结构模型系统地分析了台阶形针尖曲率半径、针尖镀Ag膜厚度、针尖镀Ag膜高度、Ag纳米粒子直径、针尖与Ag纳米粒子间距, 以及入射光角度对该针尖-基底结构热点位电场强度的影响。结果表明:在针尖曲率半径为5 nm、镀Ag膜厚度为25 nm、镀Ag膜高度为300 nm、Ag纳米粒子直径为55 nm、探针与Ag纳米粒子间距达到1 nm, 以及入射光角度为45°时, 该结构可产生最大的拉曼增强因子, 为107量级。仿真结果可为制备高增强效应的针尖和TERS活性基底结构提供重要的理论依据和实验指导。
散射 针尖增强拉曼散射 增强因子 时域有限差分法 台阶形针尖 活性基底 
中国激光
2018, 45(10): 1011001
作者单位
摘要
电子信息系统复杂电磁环境效应国家重点实验室, 河南 洛阳 471003
目标单、双基地雷达散射截面(RCS)反映了目标是否容易被单、双基地雷达检测到。目前缺乏单、双基地RCS对比的量化指标。首先定义了双基地RCS相对于单基地RCS的RCS增强因子和RCS增强率,然后应用该定义统计分析了某隐身目标和非隐身目标双基地RCS计算结果。结果显示:对隐身目标,RCS增强因子大,RCS增强率高,对于非隐身目标,其RCS增强因子显著下降,RCS增强率不高。结合指标含义,应用双基地RCS有助于隐身目标检测,而对非隐身目标效果并不明显,这与雷达界认识相一致。这也说明,应用上述两个指标进行单、双基地RCS对比分析是有效的。此外根据隐身目标在较窄双基地角范围内的双基地RCS分析结果,应用双基地角20°~40°范围内的双基地RCS即可提高对隐身目标的检测效果。
雷达散射截面 增强因子 增强率 隐身目标 radar cross section enhancement factor enhancement ratio stealth target 
强激光与粒子束
2018, 30(1): 013203

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!