付师 1,2杨增朝 1,*李江涛 1,2,*
作者单位
摘要
1 1.中国科学院 理化技术研究所, 低温重点实验室, 北京 100190
2 2.中国科学院大学 材料与光电研究中心, 北京 100049
随着以SiC和GaN为代表的第三代宽禁带半导体的崛起, 电力电子器件向高输出功率和高功率密度的方向快速发展, 对用于功率模块封装的陶瓷基板材料提出更高的性能要求。传统的Al2O3和AlN陶瓷由于热导率较低或力学性能较差, 均不能满足新一代功率模块封装的应用需求, 相较之下, 新发展的Si3N4陶瓷因兼具高强度和高热导率, 成为最具潜力的绝缘性散热基板材料。近年来, 研究人员通过筛选有效的烧结助剂体系, 并对烧结工艺进行优化, 在制备高强度高热导率Si3N4陶瓷方面取得一系列突破性进展。另外, 伴随覆铜Si3N4陶瓷基板工程应用的推进, 对其制成的基板的力、热和电学性能的评价也成为研究热点。本文从影响Si3N4陶瓷热导率的关键因素出发, 重点对通过烧结助剂的选择和烧结工艺的改进来提高Si3N4陶瓷热导率的国内外工作进行综述。此外, 首次系统总结并介绍了Si3N4陶瓷基板的介电击穿强度以及覆铜后性能评价研究的最新进展, 最后展望了高热导率Si3N4陶瓷基板的未来发展方向。
氮化硅 热导率 力学性能 烧结助剂 烧结工艺 综述 silicon nitride thermal conductivity mechanical property sintering additives sintering processes review 
无机材料学报
2023, 38(10): 1117
作者单位
摘要
1 东华大学材料科学与工程学院,上海 201620
2 东华大学功能材料研究中心,上海 201620
冷烧结技术自引入以来已有多种陶瓷材料获得了成功制备,但作为重要结构陶瓷的氧化锆其冷烧结致密度仍然偏低。为了提高冷烧结氧化锆陶瓷的致密度,采用亚稳态的纳米晶氧化锆片状粉体进行了研究。首先利用氧化石墨烯为模板,以三(羟甲基)氨基甲烷为沉淀剂制备了含56%四方相的片状氧化锆。然后,从烧结助剂、温度、压力、液相掺量4个因素出发探索了对氧化锆致密度以及微观结构的影响。结果表明:在HCl作为烧结助剂、300 ℃、500 MPa、液相掺量为20% (质量分数)的冷烧结工艺条件下,实现了约70%的致密度,远高于目前冷烧结氧化锆致密度的报道值。致密度的提升主要得益于烧结中亚稳态氧化锆的相变以及助剂对片状粉体的颗粒重排和溶解-沉淀作用。此外,孔隙率的降低使得冷烧结氧化锆陶瓷的杨氏模量和抗弯强度分别达到了24 GPa和20 MPa。
氧化锆陶瓷 冷烧结 致密度 烧结助剂 相变 zirconia ceramics cold sintering relative density sintering additives phase transformation 
硅酸盐学报
2023, 51(7): 1819
付应文 1,*许欢 1王芳 1吴俊 2[ ... ]张汪年 1
作者单位
摘要
1 九江学院材料科学与工程学院,九江332005
2 江西安天高新材料股份有限公司,九江332100
本文以高纯电熔镁砂和煅烧活性氧化铝粉为原料,以氧化亚镍(NiO)为添加剂,通过传统固相烧结法制备镁铝尖晶石材料。将MgO和Al2O3粉按理论摩尔比1∶1进行配料,在体系中分别引入质量分数为0%、0.5%、1.0%、1.5%、2.0%的NiO。利用X射线衍射(XRD)仪、扫描电子显微镜(SEM)和能谱仪(EDS)对烧结后试样进行分析,研究了NiO的添加对MgAl2O4材料烧结性能、物相组成及显微结构的影响。结果表明:引入适量的NiO可以显著促进MgAl2O4相的形成以及晶粒的发育长大;在1 600 ℃时,当NiO含量低于1.5%时,NiO能完全溶入MgAl2O4晶格并优先取代Al3+,提高了MgAl2O4晶体内部的缺陷浓度,活化了晶格,从而促进MgAl2O4的烧结。当NiO含量高于1.5%时,其内部开始出现较多第二相NiO,阻碍了物质的迁移和传输,反而不利于MgAl2O4烧结性能的提高。
镁铝尖晶石 反应烧结 显微结构 烧结助剂 体积密度 magnesium aluminate spinel NiO NiO reaction sintering microstructure sintering additive bulk density 
人工晶体学报
2022, 51(12): 2125
作者单位
摘要
1 1.西安交通大学 材料科学与工程学院 金属材料强度国家重点实验室, 西安 710049
2 2.中山大学 化学工程与技术学院, 珠海 519082
本工作研究了Li2O作为烧结助剂对固体氧化物燃料电池La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM)电解质烧结行为的影响规律, 系统表征了烧结助剂含量和烧结温度对LSGM烧结体的致密度、微观组织结构、相组成以及离子电导率的影响。研究结果表明, Li2O烧结助剂不仅可显著降低LSGM电解质的完全致密化烧结温度, 还可以消除电解质粉体中原有的LaSrGa3O7杂相, 并且抑制常规烧结过程中易于产生的MgO杂相, 从而获得较高离子电导率的LSGM块体。当Li元素添加量为摩尔分数1%时, 在1400 ℃烧结4 h 获得的LSGM烧结体, 其体密度达到理论密度的99% 且为单一的钙钛矿结构。烧结体的离子电导率在800 ℃测试温度下达到最大值0.17 S/cm, 相比未添加烧结助剂的试样提升20%以上。上述结果表明, 通过添加适量的Li2O作为烧结助剂对制备用于中温固体氧化物燃料电池(IT-SOFCs)高离子电导率的电解质具有重要意义。
固体氧化物燃料电池 LSGM电解质 烧结助剂 烧结特性 离子电导率 solid oxide fuel cell LSGM electrolyte sintering aid sintering characteristics ionic conductivity 
无机材料学报
2022, 37(10): 1087
作者单位
摘要
1 1.中国科学院 理化技术研究所, 低温重点实验室, 北京 100190
2 2.中国科学院大学 材料与光电研究中心, 北京 100049
Si3N4陶瓷因兼具优异的力学和热学性能, 成为第三代半导体陶瓷基板的首选材料之一。本研究以7种不同离子半径的稀土氧化物(RE2O3, RE=Sc、Lu、Yb、Y、Gd、Nd、La)与非氧化物(MgSiN2)作复合烧结助剂, 通过热压烧结和退火热处理制备了高强、高热导Si3N4陶瓷, 并系统研究了复合烧结助剂中RE2O3种类对Si3N4陶瓷物相组成、微结构、力学性能和热导率的影响规律。热压后Si3N4陶瓷力学性能优越, 其中添加Nd2O3-MgSiN2的样品弯曲强度达到(1115±49) MPa。退火处理后Si3N4陶瓷的热导率得到大幅提升, 呈现出随稀土离子半径减小而逐渐增大的规律, 其中添加Sc2O3-MgSiN2的样品退火后的热导率从54.7 W·m-1·K-1提升至80.7 W·m-1·K-1, 提升了47.6%。该结果表明, 相较于国际上通用的Y2O3-MgSiN2和Yb2O3-MgSiN2烧结助剂组合, Sc2O3-MgSiN2有望成为制备高强度、高热导Si3N4陶瓷的新型复合助剂。
氮化硅 复合烧结助剂 退火处理 热导率 silicon nitride composite sintering additives annealing thermal conductivity 
无机材料学报
2022, 37(9): 947
作者单位
摘要
1 山东理工大学资源与环境工程学院,山东 淄博 255049
2 红河学院,云南 蒙自 661199
碳化硅陶瓷分离膜具有高亲水性、耐化学腐蚀、抗膜污染等优异性能,在大宗废水、强腐蚀废水、高温废水等的高效处理中受到广泛的关注。然而,碳化硅是典型的强共价键化合物,碳化硅陶瓷膜制备过程具有烧结温度高、制备能耗大等问题。本文采用优选的低熔点化合物作为烧结助剂,经1 000 ℃烧结制备了高强度、孔径均匀的碳化硅陶瓷分离膜。研究了烧结助剂含量对碳化硅陶瓷膜微观结构、孔径分布、相组成及油水分离性能等的影响。研究表明,低熔点烧结助剂连接碳化硅颗粒形成陶瓷的骨架结构,随着烧结助剂含量从10%(质量分数)增加到30%,碳化硅陶瓷膜的孔隙率从42%降低到35%,同时平均孔径从3.5 μm降低到2.1 μm,成孔模式由碳化硅颗粒堆积过渡到烧结助剂成孔。纯水实验表明,烧结助剂含量为30%时,随着跨膜压差从0.2 bar增加到0.5 bar碳化硅陶瓷膜的分离通量从120 L/(m2·h)增加到306 L/(m2·h);油水分离实验表明,当跨膜压力差为0.2 bar时碳化硅陶瓷膜的截留率和分离通量分别为93.3%和123 L/(m2·h)。
碳化硅 气孔率 陶瓷膜 油水分离 烧结助剂 silicon carbide porosity membrane oil-water mixture sintering aid 
硅酸盐学报
2022, 50(6): 1572
作者单位
摘要
广州大学土木工程学院, 广州 510006
陶瓷膜因具有机械强度高、耐高温、化学稳定性好、孔径分布可控、再生性能好和环境友好等诸多优势而被应用于众多行业。然而, 其生产成本较高导致市场占有率低。此外, 陶瓷膜还面临高渗透性和高选择性不能兼备的难题, 这限制了其大规模应用。本文综述了采用廉价原料、添加烧结助剂和优化制备工艺来降低非对称陶瓷膜生产成本以及提高其性能方面的研究, 分析了相关措施对陶瓷膜的利弊, 并展望了陶瓷膜未来的发展方向和应用前景。
非对称陶瓷膜 低成本 高性能 廉价原料 烧结助剂 制膜工艺优化 asymmetric ceramic membrane low cost high performance cheap raw material sintering aid membrane preparation process optimization 
硅酸盐通报
2022, 41(10): 3634
张静 1,2,3李正权 2褚涛 1,2李慧琴 1,2[ ... ]郭亚雄 3
作者单位
摘要
1 中国振华集团新云电子元器件有限责任公司,贵州 贵阳 550025
2 贵州振华红云电子有限公司, 贵州 贵阳 550025
3 贵州大学 材料与冶金学院, 贵州 贵阳 550025
以Pb(Ni1/3Nb2/3)O3-Pb(Zr0.41Ti0.59)O3(PNN-PZT)为基础体系, 通过对烧结助剂x%CuO(质量比)和y%LiBiO2(质量比)的质量进行调节, 对陶瓷样品的相结构、微观组织形貌及电学性能进行了分析, 阐述了助烧剂对陶瓷样品性能的影响。结果发现, 在温度940~960 ℃下陶瓷烧结成瓷, 且晶粒长大较充分。当x =0.2, y =1时, 陶瓷样品的电学性能最优, 即此时压电常数d33 =608 pC/N, 机电耦合系数kp=0.65, 介电损耗tan δ =2.19%, 介电常数εr=3 843。采用烧结助剂质量比x=0.2,y=1的粉体制备7 mm×7 mm×36 mm的叠层压电驱动器, 然后进行微观组织形貌和位移特性研究。叠层压电驱动器断面微观结构表明, 电极层与陶瓷层粘接紧密, 无裂缝或间隙产生。位移的测试结果表明, 随着电压的增加, 位移也在逐渐增加, 在驱动电压为150 V时, 其最大位移为46.280 μm, 位移增大的同时, 迟滞逐渐降低。
叠层压电陶瓷 烧结助剂 低温共烧 PNN-PZT PNN-PZT stacked piezoceramics sintering aids low-temperature co-fire 
压电与声光
2022, 44(4): 502
作者单位
摘要
山东理工大学材料科学与工程学院, 淄博 255000
以Er2O3-Mg2Si-Yb2O3为三元复合烧结助剂, 制备了力学性能优异的高导热氮化硅陶瓷, 研究了Er2O3-Mg2Si-Yb2O3体系对氮化硅陶瓷致密化、微观结构、力学性能、热导率的影响。研究表明, 当添加5%(质量分数, 下同)Er2O3+2%Mg2Si+4%Yb2O3烧结助剂时, 烧结助剂对氮化硅陶瓷致密度与晶界相含量的平衡效果最佳, 此时氮化硅陶瓷具有最佳性能: 抗弯强度为765 MPa,断裂韧性为7.2 MPa·m1/2,热导率为67 W/(m·K)。在烧结过程中, 只添加5%Er2O3+2%Mg2Si的烧结助剂产生的液相量少且黏度高, 不能使氮化硅陶瓷完成致密化; 此外, 当添加的Yb2O3含量超过4%时, 烧结助剂产生大量的晶界相, 降低了氮化硅陶瓷的性能。
氮化硅陶瓷 Er2O3-Mg2Si-Yb2O3烧结助剂 致密度 微观结构 力学性能 热导率 silicon nitride ceramics Er2O3-Mg2Si-Yb2O3 sintering agent density microstructure mechanical property thermal conductivity 
硅酸盐通报
2022, 41(4): 1423
作者单位
摘要
1 西安交通大学材料科学与工程学院,金属材料强度国家重点实验室,西安 710049
2 国网安徽省电力有限公司,合肥 230061
以MgSiN2和Y2O3为烧结助剂,通过气压烧结法在氮气压力1.0 MPa、1 850 ℃和保温3 h条件下制备出Si3N4陶瓷。研究了MgSiN2/Y2O3比例及添加量对Si3N4陶瓷气孔率、显微结构、力学性能和热导率的影响。结果表明:当MgSiN2和Y2O3复合烧结助剂总含量不变时,随着Y2O3含量的增加,β-Si3N4棒状晶的发育更为充分且异常长大情况明显减少。当MgSiN2:Y2O3的摩尔比为5:2、烧结助剂总添加量为10.5%(摩尔分数)时,制备的Si3N4陶瓷综合性能最优,其抗弯强度为510 MPa、热导率为67.01 W?m-1?K-1。
氮化硅 烧结助剂 抗弯强度 热导率 silicon nitride sintering aids fracture strength thermal conductivity 
硅酸盐学报
2021, 49(12): 2556

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!