作者单位
摘要
内蒙古科技大学信息工程学院, 内蒙古 包头 014010
与红外、 紫外和拉曼光谱相比, 太赫兹光谱能量低, 在待测物质中不会出现有害光致电离现象, 伴随太赫兹技术的不断成熟, 太赫兹波已经成为常用的无损检测用波。 很多生物大分子在高频光波探测下具有指纹性, 太赫兹时域光谱技术是对生物大分子无损检测的最佳手段。 同时, 不同生物分子在太赫兹吸收谱中呈现出各不相同的吸收峰, 获得待测物质的太赫兹吸收谱后, 与标准谱进行对照可以为待测物质做出定性辨识。 在此基础上, 结合最小二乘法、 支持向量机等数据处理技术还可以实现基于太赫兹时域光谱对待测物质的定量分析。 量子化学分析方法应用了量子力学的基本原理和方法, 其中电子分析理论从电子角度出发, 在分析大分子或原子个数众多的体系时近似误差较小, 并且密度泛函理论不依赖实验数据和先验知识的支撑。 通过量子化学计算方法计算氨基酸分子的太赫兹吸收谱, 可以为氨基酸分子的太赫兹吸收峰匹配分子振动模式, 对氨基酸定性分析有一定的参考性, 并为实验获取的样品太赫兹时域光谱提供理论支撑, 在实验获得太赫兹吸收谱的基础上进行量子化学计算, 能验证实验结果的准确性。 首先利用太赫兹时域光谱系统获取进口苏氨酸样品的太赫兹吸收谱, 其次分别构建苏氨酸样品在实物中以两性离子形式存在的单分子、 二聚体和晶胞三种构型, 并利用量子化学计算方法完成了每种构型的结构优化, 最后计算三种苏氨酸分子构型的太赫兹吸收谱。 结果表明, 单分子构型和二聚体构型的太赫兹计算谱与实验谱差异较大, 但在高频段计算谱与实验谱的吸收峰峰位基本吻合, 而较为全面反映分子间氢键及范德华力作用的晶胞构型计算谱与实验谱则较为吻合。 同时表明, 与样品结构较为一致的、 保持苏氨酸物理性质的最小结构为晶胞。
太赫兹吸收谱 苏氨酸 量子化学 吸收峰 Terahertz absorption spectrum Threonine Quantum chemistry Absorption peak 
光谱学与光谱分析
2020, 40(7): 2054

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!