作者单位
摘要
1 省部共建高品质特殊钢冶金与制备国家重点实验室、 上海市钢铁冶金新技术开发应用重点实验室和上海大学材料科学与工程学院, 上海 200444
2 中国科学院安徽光学精密机械研究所, 安徽省光子器件与材料重点实验室, 安徽 合肥 230031
搭建气体动力学悬浮无容器激光加热装置耦合皮秒级时间门控拉曼光谱仪, 突破常规加热法的温度与坩埚材料的限制的同时, 依靠皮秒级脉冲激光极短的测量周期大幅度屏蔽高温极端条件下黑体辐射对拉曼信号的干扰。 并利用该平台首次原位测定了高熔点MgTi2O5超高温下(1 903、 1 953和2 003 K)的高信噪比熔体拉曼光谱。 并通过耦合三代增强型电荷耦合探测器(ICCD)与纳秒级脉冲激光实现测定MgTi2O5晶体样品室温(RT)到1 673 K的完整温度范围的原位拉曼光谱。 在RT升至1 953 K的升温过程中晶体的拉曼光谱出现展宽和红移现象, 相对强度降低, 当温度升高到熔体(2 003 K)成为单一宽泛的包络线, 表明此时晶体的长程有序的结构已经被破坏, 体系内微结构发生本质改变。 运用密度泛函理论(DFT)计算其常温拉曼光谱, 比照实验光谱, 对主要振动模式进行了归属分析, 拉曼光谱位移低于350 cm-1的低波数区的振动主要归属于晶体的晶格振动, 中波数区域485 cm-1的振动峰为Ti—O—Ti弯曲振动, 主要特征峰648 cm-1处为TiO6八面体内O—Ti伸缩振动; 787 cm-1处为TiO6八面体内O—Ti—O的弯曲振动。 对熔体结构运用量子化学从头计算法, 模拟了系列团簇模型的拉曼光谱, 获得了特征振动模式的波数和散射截面, 实验拉曼光谱采用散射截面校正后, 解谱并定量分析了熔体中团簇结构的分布。 定量分析显示, MgTi2O5晶体熔化后, 存在TiO4四面体构型(不同构型的Qi相对摩尔分数分别为54.6%Q0、 20.1%Q1、 5.0%Q2、 4.8%Q3, Qi为不同桥氧数i的钛氧四面体)和TiO6八面体构型(H0的相对摩尔分数为14.8%, H0为孤立的六配位钛氧八面体)。 Ti4+主要以孤立四面体结构Q0、 二聚体结构Q1四配位形式存在, 少部分以孤立的钛氧八面体H0六配位的形式存在。 结果表明: MgTi2O5熔体成分中占较大比例的孤立结构, 破坏了体系网络连接性, 抑制了玻璃形成能力, 因此该高温熔体不具备形成玻璃的条件。 在升温过程中MgTi2O5晶体的拉曼光谱显示无相变发生; 熔融过程中, 晶体微结构中的Ti—O多面体结构由单一TiO6型转变为TiO4与TiO6型共存。
MgTi2O5晶体 超高温原位拉曼光谱 熔体结构 密度泛函理论 量子化学从头计算 MgTi2O5 crystal In situ high temperature Raman spectroscopy Melt micro-structure Density functional theory Quantum chemistry ab initio calculations 
光谱学与光谱分析
2023, 43(8): 2507
作者单位
摘要
1 省部共建高品质特殊钢冶金与制备国家重点实验室, 上海市钢铁冶金新技术开发应用重点实验室, 上海大学材料科学与工程学院, 上海, 200444
2 SINTEF Industry, Trondheim, 7094, Norway
本文采用气动悬浮装置成功制备了(CaO-SiO2)-xAl2O3 (x=0, 6, 12, 18, 24, 30) 的一系列玻璃, 并通过拉曼光谱技术结合量子化学从头计算方法、27Al 魔角旋转核磁共振技术 (27Al MAS-NMR) 对其结构进行了定性及定量研究。研究结果表明, 当碱度R(CaO/SiO2)=1时, 随着Al2O3的加入, 硅酸盐结构转变为铝硅酸盐结构。当x≤18时, Al主要以[ⅣAlO4] 形式参与网络形成, 并在x=18 时达到最大, 同时也观察到了[ⅤAlO5]、[ⅥAlO6] 的存在; 当x>18时, [ⅣAlO4] 相对含量减少, [ⅤAlO5]、[ⅥAlO6]增加。拉曼光谱精细解谱的结果表明, Al的加入大大增加了体系的复杂性和无序性, 具体表现为精细结构Qijklm 含量的无规律变化, 但对初级结构Qi含量的影响不大, 并主要以Q2形式存在。
拉曼光谱 量子化学从头算 微结构定量 CaO-SiO2-Al2O3 CaO-SiO2-Al2O3 Raman spectroscopy Quantum chemistry ab initio calculation Microstructure quantification 
光散射学报
2022, 34(1): 22
作者单位
摘要
内蒙古科技大学信息工程学院, 内蒙古 包头 014010
应用太赫兹时域光谱系统(THz-TDS)获取了两种互为异构体的糖类D-(+)-葡萄糖和D-(-)-果糖的太赫兹吸收谱, 发现D-(+)-葡萄糖和D-(-)-果糖在0.3~1.72 THz频段内太赫兹吸收峰位存在明显区别, 可以由1.41和1.66 THz两个吸收峰位鉴别D-(+)-葡萄糖和D-(-)-果糖。 为研究D-(+)-葡萄糖太赫兹光谱吸收峰形成机理, 首先构建了D-(+)-葡萄糖的单分子构型, 采用密度泛函理论中的B3LYP泛函, 利用Gaussian09完成对D-(+)-葡萄糖单分子构型的结构优化与频率计算。 将量子化学计算结果与实验谱对比发现, 基于D-(+)-葡萄糖单分子构型的量子化学计算结果与实验谱差异较大。 然后构建了D-(+)-葡萄糖晶胞构型, 采用广义梯度近似中的PBE泛函, 利用CASTEP软件完成对D-(+)-葡萄糖晶胞构型的结构优化与频率计算。 将量子化学计算结果与实验谱对比发现, 基于D-(+)-葡萄糖晶胞构型的量子化学计算结果与实验谱较为吻合。 D-(+)-葡萄糖晶胞构型量子化学计算时, 因较为全面的考虑了分子间的氢键及范德华力的作用, 说明D-(+)-葡萄糖在1.41 THz处吸收峰的形成为分子间弱相互作用。 其次通过Materials Studio 2017软件指认了D-(+)-葡萄糖在1.41 THz吸收峰处的振转模式, 发现D-(+)-葡萄糖在1.41 THz吸收峰主要是分子之间的相互作用, 进一步说明D-(+)-葡萄糖在1.41 THz处的吸收峰主要是分子间的弱相互作用。 在量子化学计算结果的基础上利用Multiwfn软件对D-(+)-葡萄糖晶胞进行RDG计算, 利用VMD软件对D-(+)-葡萄糖晶胞中分子间的弱相互作用的类型、 位置和强度进行可视化研究。 研究结果表明, 利用太赫兹时域光谱技术能够敏锐地感知糖类物质结构的细微变化, 并能够正确鉴别其同分异构体。
太赫兹时域光谱 D-(+)-葡萄糖 D-(-)-果糖 量子化学 Terahertz time-domain spectroscopy D-(+)-glucose D-(-)-fructose Quantum chemistry 
光谱学与光谱分析
2022, 42(1): 26
作者单位
摘要
内蒙古科技大学信息工程学院, 内蒙古 包头 014010
传统鉴别法和现代鉴别法是目前我国中草药检测领域的主要方法。 传统鉴别方法虽因简便、 成本低廉等优势在研究中被广泛采用, 但鉴别准确度在一定程度上依赖于操作者是否具备丰富的药材知识和经验。 随着光谱分析技术的发展, 基于光谱分析技术的现代鉴别法逐渐走入人们的视野。 理论及大量实验研究表明, 中草药代谢物分子内振动模式及晶格的低频振动均发生在太赫兹波段, 据此可以鉴别中草药中所含成分。 甘草酸是甘草中的主要成分, 选择甘草酸为研究对象, 运用量子化学计算方法模拟甘草酸的太赫兹吸收谱, 为甘草酸的太赫兹吸收特征匹配分子振动模式, 此项工作对于深刻理解甘草酸分子内部各基团的相互作用与谱的形成机理十分必要。 为了确保模拟结果的可靠性, 需要建立甘草酸分子的初始构型, 选择合适的计算方法进行结构优化和频率计算, 最终获取甘草酸的太赫兹吸收谱数据。 利用Gaussian09半经验理论的PM3算法计算得到甘草酸太赫兹特征吸收峰分别位于0.87, 1.17, 1.56与2.76 THz处, 其中1.56 THz处的特征峰与参考文献中实验所测结果完全一致, 验证了计算结果的可靠性。 由于每个甘草酸分子中含有120个原子, 体系庞大, 在做振转模式分析时无法呈现其完整的结构, 故采用甘草酸分子的平面结构代替立体结构进行太赫兹特征吸收峰的振转分析。 分析表明, 甘草酸分子的太赫兹特征吸收峰产生与含氧官能团以及碳环的振转有关, 但主要是由甘草酸分子中的含氧官能团扭转形成的。
甘草酸 量子化学 太赫兹吸收谱 半经验理论 振转模式 Glycyrrhizic acid Quantum chemistry Terahertz absorption spectrum Semi-empirical theory Vibration mode 
光谱学与光谱分析
2020, 40(6): 1780
作者单位
摘要
内蒙古科技大学信息工程学院, 内蒙古 包头 014010
与红外、 紫外和拉曼光谱相比, 太赫兹光谱能量低, 在待测物质中不会出现有害光致电离现象, 伴随太赫兹技术的不断成熟, 太赫兹波已经成为常用的无损检测用波。 很多生物大分子在高频光波探测下具有指纹性, 太赫兹时域光谱技术是对生物大分子无损检测的最佳手段。 同时, 不同生物分子在太赫兹吸收谱中呈现出各不相同的吸收峰, 获得待测物质的太赫兹吸收谱后, 与标准谱进行对照可以为待测物质做出定性辨识。 在此基础上, 结合最小二乘法、 支持向量机等数据处理技术还可以实现基于太赫兹时域光谱对待测物质的定量分析。 量子化学分析方法应用了量子力学的基本原理和方法, 其中电子分析理论从电子角度出发, 在分析大分子或原子个数众多的体系时近似误差较小, 并且密度泛函理论不依赖实验数据和先验知识的支撑。 通过量子化学计算方法计算氨基酸分子的太赫兹吸收谱, 可以为氨基酸分子的太赫兹吸收峰匹配分子振动模式, 对氨基酸定性分析有一定的参考性, 并为实验获取的样品太赫兹时域光谱提供理论支撑, 在实验获得太赫兹吸收谱的基础上进行量子化学计算, 能验证实验结果的准确性。 首先利用太赫兹时域光谱系统获取进口苏氨酸样品的太赫兹吸收谱, 其次分别构建苏氨酸样品在实物中以两性离子形式存在的单分子、 二聚体和晶胞三种构型, 并利用量子化学计算方法完成了每种构型的结构优化, 最后计算三种苏氨酸分子构型的太赫兹吸收谱。 结果表明, 单分子构型和二聚体构型的太赫兹计算谱与实验谱差异较大, 但在高频段计算谱与实验谱的吸收峰峰位基本吻合, 而较为全面反映分子间氢键及范德华力作用的晶胞构型计算谱与实验谱则较为吻合。 同时表明, 与样品结构较为一致的、 保持苏氨酸物理性质的最小结构为晶胞。
太赫兹吸收谱 苏氨酸 量子化学 吸收峰 Terahertz absorption spectrum Threonine Quantum chemistry Absorption peak 
光谱学与光谱分析
2020, 40(7): 2054
作者单位
摘要
内蒙古科技大学信息工程学院, 内蒙古 包头 014010
对比于氨基酸的红外分析法, 太赫兹波的电子能量更低, 可实现无损检测。 氨基酸分子内原子振动、 分子间氢键的作用、 以及晶体中晶格的低频振动均处于太赫兹波段, 使其在太赫兹波段具有吸收峰, 且不同的氨基酸分子太赫兹吸收峰不同, 故可用氨基酸在太赫兹波段的这种“指纹特性”实现氨基酸类物质的定性分析。 量子化学分析方法可以应用量子力学的基本原理和方法, 研究稳定和不稳定分子的结构、 性能及其之间的关系, 还可以针对分子与分子间的相互作用、 相互碰撞及相互反应等问题进行研究。 通过量子化学计算方法计算氨基酸分子的太赫兹吸收谱, 可以为氨基酸分子的太赫兹吸收峰匹配分子振动模式, 对氨基酸定性分析有一定参考性与指向性, 并为实验获取的样品太赫兹时域光谱提供理论支撑, 在实验获得太赫兹吸收谱的基础上进行量子化学计算, 还能为实验结果进行验证。 首先利用太赫兹时域光谱技术获取了谷氨酰胺、 苏氨酸、 组氨酸的太赫兹吸收谱, 分别构建这三种氨基酸样品在实物中以两性离子形式存在的单分子构型, 利用量子化学计算方法在完成结构优化后进行太赫兹吸收谱模拟计算。 计算结果表明三种氨基酸单分子的太赫兹吸收谱计算结果与实验获取的太赫兹吸收谱差异较大, 但在高频段吸收峰峰位基本吻合。 通过GaussView分别查看了这三种氨基酸分子在太赫兹段内的吸收峰对应频率处的振转情况, 发现在高频段内三种氨基酸分子官能团均只发生转动而未见振动, 并且转动模式基本一致。 通过对氨基酸官能团的太赫兹吸收谱进行量子化学计算, 将官能团在高频段内吸收峰对应频率处的振转模式与三种氨基酸分子在该段内吸收峰对应频率处的振转模式做了对比。 研究表明, 在氨基酸单分子构型下由量子化学方法计算所得的太赫兹吸收谱中, 高频段内计算得出的模拟吸收峰与实验获取的太赫兹吸收峰基本吻合; 振转模式分析发现, 谷氨酰胺、 苏氨酸、 组氨酸在太赫兹高频段内的氨基酸官能团振转模式相同, 三种氨基酸分子在高频段内的吸收峰主要来源于氨基酸官能团。 因此, 结合量子化学计算与太赫兹吸收谱可以实现氨基酸类物质的定性分析。
太赫兹吸收谱 氨基酸 量子化学 吸收峰 Terahertz absorption spectrum Amino acids Quantum chemistry GaussView GaussView Absorption peak 
光谱学与光谱分析
2020, 40(2): 397
王雯倩 1,2,*万其进 1,3,4陈奕云 2,5王新智 6[ ... ]万远 7
作者单位
摘要
1 武汉工程大学化学与环境工程学院, 湖北武汉 430073
2 武汉大学资源与环境科学学院, 湖北武汉 430212
3 武汉工程大学绿色化工过程教育部重点实验室, 湖北武汉 430073
4 湖北省新型反应器与绿色化学工艺重点实验室, 湖北武汉 430073
5 土壤与农业可持续发展国家重点实验室, 江苏南京 210008
6 西安电子科技大学微电子学院, 陕西西安 710071
7 湖北师范大学城市与环境学院, 湖北黄石 435002
采用量子化学从头算的方法计算了多环芳烃萘、苊烯的红外谱图, 比较了理论计算与实验实测所得的萘、苊烯红外谱图结果。在此基础上, 结合 IR光谱解析方法对萘、苊烯的红外谱峰基团进行归属和认定。结合分子轨道理论以及 π-π共轭效应理论, 分析了多环芳烃萘与苊烯的吸光强度以及谱峰位移的差异。得出结论: ①随着共轭体系的增大, 多环芳烃苊烯的吸光强度相较于萘明显增大。 ②共轭效应的增强, 使得苊烯苯环上的 C=C伸缩振动频率向低频率处位移, 而与苯环相连的 C-C伸缩振动向高频率处位移。这一结论可进一步应用于红外光谱多环芳烃的鉴别, 为典型场地有机污染物的在线监测设备研制提供理论基础。
量子化学从头算 多环芳烃 红外光谱特征 典型场地污染 ab initio quantum chemistry, PAHs, infrared spectr 
红外技术
2019, 41(10): 982
作者单位
摘要
上海大学, 省部共建高品质特殊钢冶金与制备国家重点实验室, 上海 200072
采用高温原位拉曼光谱技术, 研究了Li2B4O7从常温至1 373 K温度范围内的拉曼光谱。 在升温过程中, 晶体的拉曼光谱出现展宽和红移现象, 且强度降低。 晶体熔化时, 由2个[BO4]和2个[BO3]组成的[B4O9]环状结构转变成(B3O6)3- 六元环和[BO3]结构, [BO4]结构减少直至消失。 基于密度泛函理论, 计算了Li2B4O7晶体的拉曼光谱, 对其振动模式进行了分析归属。 利用量子化学从头计算法计算了由[B3O6-BO3]为基础相互连接形成的x(Li2B4O7)(x=2, 3, …, 9)的环状团簇模型的拉曼光谱, 对Li2B4O7熔体的结构进行了模拟分析。 计算结果表明Li2B4O7熔体的阴离子基元为三个(B3O6-BO3)组成的大三元环超级结构。
高温原位拉曼光谱 密度泛函理论 量子化学 Li2B4O7 Li2B4O7 In situ high temperature Raman spectroscopy Density functional theory (DFT) Quantum chemistry 
光谱学与光谱分析
2018, 38(6): 1736
作者单位
摘要
量子光学与光量子器件国家重点实验室,山西大学激光光谱研究所,山西 太原 030006
对乙基苯酚是构成酪氨酸分子的重要基团,根据其光谱特性可以洞察酪氨酸的光学特性。我们采用超声分子束技术获得了对乙基苯酚的单色共振双光子电离光谱,首次报道了800~1 500 cm-1范围的高分辨率激发态振动谱。配合量子化学理论计算分析了各谱对应的振动模式。结果表明取代基越长,分子的激发能越低;取代基的方向对激发能有明显影响;取代基会使苯环平面内的振动能量降低,但取代链的长短对振动能量没有明确影响。研究结果为分子的里德堡态、动力学和零动能光谱的相关研究提供了重要的参考数据。
对乙基苯酚 单色共振双光子电离光谱 量子化学 振动模式 p-ethylphenol one-color resonant two-photon ionization spectrosc quantum chemistry vibrational mode 
量子光学学报
2016, 22(2): 115
作者单位
摘要
上海大学,材料科学与工程学院,省部共建高品质特殊钢冶金与制备国家重点实验室和上海市钢铁冶金新技术开发应用重点实验室,上海 200072
本文利用原位高温拉曼光谱技术并结合量子化学从头计算方法研究了Li2O-WO3二元系钨酸盐熔体中稳定存在的结构单元随成分变化的趋势,给出了其在不同成分下微结构的具体模型,并对其主要振动模式进行了归属。研究表明成分不同会导致四面体基团聚合形成不同长度的链状,且Li2O与WO3摩尔比越小,也即WO3的含量越多,其链的长度越长;结合量子化学从头计算理论分析,认为当熔体的摩尔比为1∶1、1∶2、1∶3以及1∶4时,对应的阴离子基团模型分别为[WO4]2-、[W2O7]2-、[W3O10]2-和[W4O13]2-,其中[W2O7]2-、[W3O10]2-和[W4O13]2-分别由两个、三个、四个[WO4]2-以共顶形式连接而成。
钨酸盐熔体 原位高温拉曼光谱 量子化学从头计算方法 molten tungstates in-situ high-temperature Raman spectroscopy quantum chemistry ab initio calculation method 
光散射学报
2016, 28(2): 149

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!