周一轩 1,2杨婧 3徐陶然 2乔治 2[ ... ]褚卫国 2,4,***
作者单位
摘要
1 长春理工大学光电工程学院,吉林 长春 130022
2 国家纳米科学中心纳米加工实验室,中国科学院纳米光子材料与器件重点实验室(筹),中国科学院纳米科学卓越创新中心,北京 100190
3 中国环境监测总站国家环境保护环境监测质量控制重点实验室,北京 100012
4 中国科学院大学材料与光电研究中心,北京 100049
报道了一种利用混合抗蚀剂的一步电子束曝光制备表面增强拉曼散射(SERS)基底的新方法。基于氢倍半硅氧烷(HSQ)和聚甲基丙烯酸甲酯(PMMA)电子束抗蚀剂的混合产生相分离形成纳米球体的现象,并利用合适剂量(2000 μC/cm2)电子束曝光、固化纳米球,经显影去除多余残胶后再使用电子束蒸发沉积Au薄膜,得到纳米球型SERS基底。纳米球尺寸分布均匀,相对标准偏差为7.56%,表面粗糙Au层及球之间的间隙能够提供丰富SERS“热点”,从而使其表现出良好的拉曼增强效应。该SERS基底对多种目标物均能表现出良好的检测性能。对4-巯基苯硼酸(4-MPBA)检测的SERS增强因子为5.8×106,检测限为1.06×10-8 mol/L。对罗丹明6G(R6G)和三聚氰胺的检测限分别达到7.08×10-9 mol/L和7.94×10-10 mol/L。三聚氰胺的检测范围为1.0×10-9~1.0×10-5 mol/L,跨度达4个数量级,并呈现良好线性关系(R2=0.952),检测优势十分显著。这种利用不同性质抗蚀剂在纳米尺度独特的分离现象制备纳米球的方法简单、重复性好,对发展新型纳米结构高性能SERS基底及其制备方法具有重要意义。
表面光学 表面增强拉曼散射(SERS) 电子束曝光 痕量检测 三聚氰胺 
光学学报
2022, 42(15): 1524002
作者单位
摘要
北京工业大学理学部物理与光电学院, 微纳信息光子技术研究所, 北京市朝阳区平乐园100号数理楼, 100124
金、银、铜等贵金属的纳米结构都具有表面等离激元共振效应, 在表面增强拉曼散射(SERS)和光催化领域具有重要的应用价值。合金纳米颗粒有望兼具多种金属的优点, 赋予金属纳米颗粒更多优良品质。本论文中, 我们通过改进“Brust”法, 成功合成了直径1~5 nm的Au1Ag1和Au1Cu1合金纳米颗粒, 所制备的合金纳米颗粒在空气中具有良好的稳定性, 并在有机溶剂中具有良好的溶解性。利用溶液法组装的Au1Ag1和Au1Cu1合金SERS基底, 分别对532 nm和785 nm的激发光表现出良好SERS性能。相同条件下, Au1Ag1基底比Au基底对R6G探针分子的拉曼信号强度提高了2~4倍, 表现出良好的SERS活性。Au1Cu1合金基底则比Au1Ag1合金和Au基底表现出更强的光催化活性, 在光催化领域表现出潜在的应用价值。
表面增强拉曼散射(SERS) 金-银合金纳米颗粒 金-铜合金纳米颗粒 合金SERS基底 Surface enhanced Raman scattering (SERS) Gold-silver alloy nanoparticles Gold-copper alloy nanoparticles Alloy SERS substrate 
光散射学报
2022, 34(1): 73
作者单位
摘要
1 长春理工大学光电工程学院, 吉林 长春 130022
2 中国科学院纳米光子材料与器件重点实验室, 中国科学院纳米科学卓越创新中心, 国家纳米科学中心纳米加工实验室, 北京 100190
表面增强拉曼散射(SERS)是一种无损、 高灵敏、 快速检测痕量重金属离子的光谱技术。 通过调控和优化纳米结构图案和尺寸可显著增强局域表面等离子体共振(LSPR)与表面等离子体激元(SPP)的耦合以提升电磁场强度, 是获得高性能SERS芯片的重要新途径。 提出一种用于检测痕量汞离子的新型金属/介质三维周期纳米结构高性能SERS芯片。 利用新型应力分化式双层模板纳米压印方法实现了大面积高均一纳米结构SERS芯片的低成本、 批量制备。 该芯片成功用于痕量汞离子的高灵敏快速检测。 采用有限元方法对压印过程界面微区应力进行模拟, 通过调控压印模板纵向结构和横向尺寸对模板进行设计。 模拟结果表明, 纵向有台阶结构的双层模板图案区域呈现高、 低两个应力分区, 其中, 高应力区占图案~72%的面积, 其应力均匀性比单层模板提升17%; 低应力区分布在图案边缘~28%的区域, 可有效减小脱模切应力。 当模板横向尺寸从15 mm缩减至7 mm, 界面应力整体提升1~2个数量级, 将显著提高压印成功率。 使用不同横向尺寸的单、 双层模板进行压印实验结果表明, 尺寸为7 mm的压力分化式双层模板实现了大面积高均一纳米结构的高质量制备, 这与模拟结果高度一致。 在压印胶纳米结构上构筑金纳米颗粒得到金属/介质三维周期纳米结构SERS芯片。 此芯片对罗丹明6G分子的检测极限为2.08×10-12 mol·L-1, 增强因子达3×108, 检测均一性RSD为8.07%。 该芯片对汞离子的探测限浓度仅为10 ppt(5.0×10-11 mol·L-1), 浓度线性工作范围为5.0×10-11~5.0×10-5 mol·L-1, 跨度达6个数量级, 呈现良好的线性关系(R2=0.966), 在目前汞离子检测技术中具有显著优势。 提出一种通用的高灵敏快速检测痕量物质的SERS芯片设计和制备方法。 这种基于光学原理芯片“结构设计-批量制备-实际应用”的研究范式将连接芯片设计和批量制备两个关键点, 推动其实际应用。
表面增强拉曼散射(SERS) 痕量检测 纳米压印(NIL) 三维纳米结构 有限元分析 Surface enhanced Raman scattering (SERS) Design and fabrication of 3D SERS chips Finite element analysis (FEA) Nanoimprint lithography (NIL) Trace detection 
光谱学与光谱分析
2021, 41(12): 3782
作者单位
摘要
1 江苏大学微纳米科学技术中心,镇江 212013
2 南京大学固体微结构物理国家重点实验室,南京 210093
基于金属包裹的多孔硅衬底具有制备成本低、检测能力强的优点。自20世纪表面增强拉曼散射(SERS)现象被发现以来,多孔硅-Au/Ag复合材料逐渐展现出作为SERS衬底的优势,被广泛应用于生物、化学、医疗等领域。本文综述了近些年来基于多孔硅复合Au/Ag纳米颗粒混合平台的研究,重点讨论了将贵金属Ag/Au复合于多孔硅衬底上的制备方法,介绍了它们在不同制备条件下枝晶结构的生长形貌和检测性能,并对多孔硅-Ag/Au枝晶复合结构作为SERS衬底的未来发展进行简要分析。
多孔硅 表面增强拉曼散射(SERS) 复合材料 枝晶结构 porous silicon surface-enhanced Raman scattering (SERS) AgNPs/AuNPs AgNPs/AuNPs complex meterial dendritic structure 
人工晶体学报
2021, 50(7): 1314
作者单位
摘要
中国科学院微电子研究所, 北京 100029
多种农药, 包括孔雀石绿(MG)作为禁用兽药, 存在食用致癌的风险。 由于MG低廉的价格和极好的药效, 在渔业养殖中一直被不法商贩非法使用, 使得鱼类生鲜中时有MG残留检出。 针对MG分子痕量残留的检测, 目前一般是抽取少量养殖水样, 再利用高效液相色谱柱、 液相色谱-光谱等方法来评估其是否超标。 这类传统的检测方法一般需要依赖价格昂贵的大型设备, 且检测过程操作繁琐复杂, 单次检测耗时长、 价格高, 因而与农贸市场中商品流通量大、 速度快、 价格需亲民低廉等特点和要求不相符合。 近年来, 表面增强拉曼散射(SERS)检测技术以及便携式拉曼光谱仪的出现, 有望实现对痕量农药分子的现场快速检测, 进而很好地解决这一问题。 SERS检测技术利用金属纳米结构的表面等离激元效应感应位于其结构表面附近的分子, 得到分子种类和浓度信息。 为了降低可检测的浓度极限, 一般会在SERS基底上利用咖啡环效应或其他手段将待测分子蒸发富集, 以获得足够高的信号强度。 针对亲水基底, 液滴与基底相接触后, 会在基底表面摊开, 使其分布面积扩大, 导致其咖啡环周长变长, 分子分布浓度随之降低。 而当采用疏水基底富集时, 由于常规的疏水基底表面黏附性小, 液滴在其表面处于随处滚动无法抓取的状态, 极大增加了操作的难度。 以MG分子痕量残留的检测为例, 由于农贸市场人员众多、 无专业实验平台, 磕碰撞击时有发生, 在此环境下采用疏水SERS基底对农药分子进行检测显然是不可取的。 该研究提出一种基于超疏水高黏附纳米森林结构的SERS基底用于痕量MG分子的快速现场检测。 相比于超疏水SERS基底, 所提出的超疏水高黏附基底利用其高黏附性可牢固抓取待测液滴, 解决了以往超疏水基底在实际现场检测中存在液滴滚动无法操作的问题。 此外, 与亲水基底相比, 超疏水高黏附基底由于接触角大, 可将咖啡环面积缩小5.73倍, 继而使分子的富集浓度提高5.73倍, 最终使检测极限浓度降低了至少两个数量级。 研究所提出的超疏水高黏附SERS基底有望在痕量农药分子快速现场检测中得到应用。
表面增强拉曼散射(SERS) 痕量农药分子 超疏水高黏附 孔雀石绿 咖啡环 分子富集 Surface enhanced Raman scattering (SERS) Trace pesticide molecules Parahydrophobic Malachite green Coffee ring Molecular enrichment 
光谱学与光谱分析
2021, 41(8): 2499
作者单位
摘要
核酸是生命最基本的遗传物质, 开展核酸分子诊断对促进人类健康医疗的发展具有重要意义。 表面增强拉曼光谱(SERS)是一种快速无损检测技术, 具有制样简单、 水的干扰小、 非侵入、 实时检测等优点, 在核酸检测、 病原微生物检测、 肿瘤精准分子诊断等领域展现出良好的应用潜力。 该研究立足于临床检验应用的角度, 简要阐述了SERS技术原理及SERS增强理论, 重点介绍了SERS在核酸检测方面的最新研究方法及研究成果。 传统的非标记型检测方法是直接检测靶核酸的拉曼信号, 但其灵敏度和特异性并不能满足检测要求。 在标记型SERS核酸检测技术中, 充分利用SERS的“指纹图谱”分析优势, 以DNA探针的方式将拉曼活性分子与靶核酸连接, 通过对DNA探针上拉曼活性分子信号变化的检测和分析, 可实现对靶核酸的定性及定量分析, 达到可控度及稳定性好的高通量检测目的, 提高检测灵敏度及特异性。 按照不同的拉曼信号放大方式, SERS标记型核酸检测方法主要包括: “夹心法”、 “信号开关法”及链式杂交反应信号放大法, 特别以夹心法检测策略的灵敏度最高。 已有研究表明SERS在DNA/RNA检测应用中可克服传统方法对样本要求高、 耗时等缺点, 实现灵敏快速的检测分析, 为核酸分子的实时快速检测及临床疾病的实时精准诊断提供有效的分析工具。 同时, 指出了SERS技术在临床应用方面依然面临诸多挑战: (1)拉曼活性分子与纳米颗粒的结合稳定性差, 较难实现大规模生产重现性能好、 可长期稳定储存的高灵敏度SERS探针; (2)临床生物样本成分复杂, 对SERS检测信号的干扰因素较多, 因此选择有效的数据分析方法非常重要; (3)研究高灵敏、 易操作、 低成本的拉曼光谱仪是将SERS技术转化为临床实际应用的关键。 随着SERS研究的深入及多学科领域的交叉发展, SERS技术有望广泛应用于核酸检测以及整个生物医学检测领域, 为生命科学提供一种强大的分析技术。
拉曼光谱 表面增强拉曼散射(SERS) 核酸检测 SERS探针 Raman spectroscopy Surface-enhanced Raman spectroscopy (SERS) Nucleic acid detection SERS tags 
光谱学与光谱分析
2020, 40(10): 3021
赵倩 1,2杨宇东 1桂博 1,2毛海央 1,2,3[ ... ]陈大鹏 1,2,3
作者单位
摘要
1 中国科学院微电子研究所集成电路先导工艺研发中心, 北京 100029
2 中国科学院大学, 北京 100049
3 无锡物联网创新中心有限公司, 江苏 无锡 214135
具有无损、 超灵敏和实时检测优点的表面增强拉曼散射(SERS)器件具有重要研究意义。 目前, 针对SERS器件的大部分研究都围绕着非透明的器件展开。 使用此类器件检测高浓度试剂时, 激光只能从正面入射。 这意味着入射激光需要穿透被测试剂分子层才能到达位于其下方的金属纳米结构表面, 因此用于激发金属纳米结构表面等离子体共振(SPR)的激光能量被减弱, 相应地, SERS光谱信号也被减弱; 此外, SERS光谱信号因被测试剂分子层的遮挡, 无法高效返回到电荷耦合元件(CCD)中, 再次被大幅度减弱, 甚至有可能完全无法被检测到。 相比之下, 如果使用透明SERS器件, 检测过程中将被测试剂分子置于器件正面, 激光从器件背面入射, 此时高浓度被测试剂分子层对入射激光和SERS光谱信号的干扰最小。 这种情况下, 可以得到较好的光谱信号。 通过在石英基底上旋涂聚酰亚胺(PI)层, 然后通过氧等离子体对PI层进行无掩模轰击, 在石英基底上自行生成纳米纤维掩模, 配合反应离子刻蚀工艺(RIE)制备了石英纳米锥森林结构。 之后, 通过金属纳米颗粒溅射工艺, 得到 SERS透明器件。 对于该SERS透明器件, 在测试过程中, 拉曼激光可从器件的正面以及背面分别入射。 初步的测试结果表明, 对于罗丹明6G(R6G)在10-3~10-6 mol·L-1这一浓度范围内, 背面入射方式收集的SERS光谱信号强度高于正面入射方式。 另外, 进一步研究了该SERS透明器件背面检测的一致性, 得到了良好的结果, 证明了其在实际生化检测中的可行性。 这一工作有望扩展SERS在分析物检测领域中的应用。
纳米锥森林结构 表面增强拉曼散射(SERS) SERS透明器件 石英 Nanocone forests Surface enhanced Raman scattering (SERS) SERS transparent device Quartz 
光谱学与光谱分析
2020, 40(4): 1168
施浩 1陈辉 1,2张政 1孙玉 1张学典 1,2,*
作者单位
摘要
1 上海理工大学 光电信息与计算机工程学院,上海 200093
2 上海理工大学 上海市现代光学系统重点实验室,上海 200093
为了快速灵敏地检测特布他林(terbutaline,TB),制备核?卫星纳米结构的Fe3O4/SiO2/Au-MNPs磁性基底对其进行表面增强拉曼光谱(SERS)检测。通过磁性分离、调节体系pH的方法考察特布他林浓度与拉曼光谱强度之间的线性关系并绘制校准曲线。实验结果表明,该纳米卫星结构的磁性SERS基底对TB的检测限为3.77×10?10 mol/L,同时在5×10?5 ~5×10?9 mol/L范围内,TB的SERS信号与其浓度呈线性关系,利用最小二乘法拟合得到的线性相关系数R2为0.996。该复合材料制备方法简便易行,为合成其他纳米复合材料提供了参考。
表面增强拉曼散射(SERS) 纳米卫星结构 核壳材料 磁性探针 特布他林 无标痕量检测 surface enhanced Raman scattering(SERS) nanosatellite structure core-shell materials magnetic probe terbutaline label-free detection 
光学仪器
2020, 42(2): 1
作者单位
摘要
1 上海理工大学 机械工程学院,上海 200093
2 上海理工大学 光电信息与计算机工程学院,上海 200093
3 上海大学 材料基因组工程研究院,上海 200041
为了提高拉曼光谱仪的探测灵敏度,设计了铜基表面增强拉曼散射(surface enhanced Raman scattering, SERS)薄膜基底。以Cu40Ti60合金为靶材,通过控制磁控溅射参数获得了一系列铜钛合金薄膜,采用脱合金法进一步获得了不同结构的铜基薄膜,系统地研究了不同溅射参数对铜基薄膜的SERS特性的影响,确定了制备SERS基底的最佳溅射参数。脱合金后所得铜膜具有多孔结构,能形成高强度局域电磁场,即SERS“热点”(hotspots),从而表现出优异的SERS增强性能。该基底制备成本低,重复性好,能用于灵敏检测且SERS增强因子可达1.8×107,具有较好的应用前景。
纳米多孔铜膜 磁控溅射 脱合金 表面增强拉曼散射(SERS) nanoporous copper film magnetron sputtering dealloying surface enhanced Raman scattering(SERS) 
光学仪器
2019, 41(6): 40
作者单位
摘要
1 上海大学理学院物理系, 上海 201900
2 中国科学院上海高等研究院宏观量子现象与应用研究中心, 上海 200120
利用表面增强拉曼散射(SERS)技术可增强金属表面某些位置(热点)的电场强度。选定Ag纳米颗粒二聚体这一金属纳米结构体系,研究其作为超分辨SERS成像基底的可行性。采用时域有限差分(FDTD)法,计算分析Ag纳米颗粒二聚体在不同波长和偏振方向的激发光作用下的电场分布特点。结果表明:Ag二聚体的电场分布具有高度局域化的特点,并且Ag二聚体中热点的电场强度可由激发光的偏振方向调控,这使其可以作为实现超分辨SERS成像的基底。
表面光学 Ag二聚体 时域有限差分(FDTD)法 表面增强拉曼散射(SERS) 超分辨成像 
激光与光电子学进展
2019, 56(20): 202412

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!