作者单位
摘要
浙江科技学院 理学院, 杭州 310023
为了研究Airy涡旋光束通过负折射率介质(NIM)的传输动力学特性, 利用Collins公式推导出了Airy涡旋光束通过NIM的传输动力学方程, 并用该方程研究了Airy涡旋光束在NIM中的光强、涡旋、相位等传输特性。结果表明, 通过调节NIM的参数可实现对Airy 涡旋光束主峰位置、涡旋位置、主峰与涡旋的重叠位置和光强的控制。光束在NIM中的特性研究在光学显微操控和光学分选等领域具有潜在价值。
物理光学 艾里涡旋光束 负折射率介质 Collins公式 光强 传输特性 physical optics vortex Airy beams negative index medium Collins formula intensity propagation properties 
激光技术
2022, 46(6): 850
作者单位
摘要
复旦大学物理系,上海 200433
准晶是具有长程有序但不具有周期性的奇特结构。光子准晶以其优越的调控电磁波的能力和广阔的应用前景受到国内外学者的广泛关注。光子准晶不仅具有全带隙、局域态、负折射、近零折射率等一般特性,还因其独特的旋转对称性在激光和非线性频率转换等方面具有优势。本文简要回顾近年来光子准晶的发展历程,从理论研究与应用研究两方面介绍光子准晶研究的主要方向,并对其未来发展趋势进行了展望。
光子准晶 全带隙 局域态 负折射 光子准晶激光 非线性光子准晶 photonic quasicrystal complete bandgap localization state negative refraction photonic quasicrystal laser nonlinear photonic quasicrystal 
人工晶体学报
2021, 50(7): 1248
作者单位
摘要
北京邮电大学理学院,北京 100876
为了研究光子晶体负折射率所在的频率范围,基于有限元算法分析数值来求解二维光子晶体的带隙结构,这一过程涉及如何设计数学和物理模型,设计有限元算法的求解方程,对数值结果进行物理分析。首先使用有限元算法将布里渊区域内所有相关频率上波矢空间中的点都计算出来以绘制等频率面,然后绘制不同空气孔半径下的等频率面,最后在等频率面的结构上找到群速度为负的方向就能得到负折射率所在的频率区间。同时,比较不同空气孔半径对光子晶体负折射所在频率区间的影响,可为光子晶体器件的制备提供支撑。
几何光学 光子晶体 负折射材料 等频率面 数值模拟 
激光与光电子学进展
2021, 58(21): 2108002
作者单位
摘要
宁波大学信息科学与工程学院,浙江 宁波 315211
手征超表面是由具有特定电磁响应的平面手征单元结构构成的超薄超材料,由于其具有自由控制电磁波的奇异能力而引起了极大的关注。通过在超表面设计中加入可调谐材料,可以实现其功能受外部激发控制的可调谐或可重构的超器件,为动态调谐电磁波开辟了新的道路。本文介绍了可调/可重构手征超表面电磁特性的一些理论基础,当线偏振光进入可调谐手征超表面时,会被分解为左旋圆偏振(LCP)波和右旋圆偏振(RCP)波,通过外部环境改变介质的介电常数和磁导率,超表面光器件可以动态地控制各种偏振光特别是圆偏振光的响应特性如折射率、二色性、旋光性、不对称传输等。按照可调谐手征超表面所控制的负折射率、圆二色性和旋光性、不对称传输性质,对其最新的研究进展进行了综述。最后,对可调谐手征超表面这一快速发展领域未来可能的发展方向和存在的挑战提出了自己的看法。
可调谐手征超表面 负折射 圆二色性和旋光性 不对称传输 tunable chiral metasurface negative refraction circular dichroism and optical rotation asymmetric transmission 
光电工程
2021, 48(2): 200218
作者单位
摘要
上海理工大学 光电信息与计算机工程学院,上海 200093
理论上折射率为?1的平板超透镜可以实现完美成像,但等效折射率为?1的光子晶体结构,不满足介电常数ε=?1和磁导率μ=?1的条件,光子晶体与自由空间阻抗不匹配,某些角度的入射光与光子晶体内布洛赫波不能耦合,致使该空间频率光信息丢失,限制了光子晶体成像分辨率。为了提高成像分辨率,在光子晶体表面设置亚波长光栅结构,利用光栅的增透减反和波矢匹配作用,提高光子晶体对入射光的耦合效率。通过调整光栅周期,使更多高空间频率分量参与成像,同时抑制低频分量的传输。设置亚波长光栅结构后,光子晶体成像分辨率由597 lp/mm提高到了850 lp/mm,突破了衍射极限。
光栅 光子晶体 负折射 成像 grating photonic crystal negative refraction imaging 
光学仪器
2021, 43(1): 63
作者单位
摘要
深圳大学电子科学与技术学院,广东深圳 518060
超材料与超表面因表现出天然材料所不具备的新奇性能而在光集成、光通信、微纳光学、隐身、超分辨成像与传感等众多领域显示出巨大的应用潜力,是国际学术前沿的热点研究领域,曾先后三次被 Science评为年度全球十大科技进展之一。主要介绍了超材料与超表面的构成、性能特点及其应用,并简单介绍近期在超表面方面的研究工作进展,主要包括光栅结构超表面在波前整形、灵活调控 Fano共振和远场超分辨成像等领域的应用。
超材料 超表面 光栅结构 负折射 波前 metamaterial metasurface opticalgratingstructure negativerefractiveindex wavefront 
光学与光电技术
2020, 18(5): 5
作者单位
摘要
山西大学物理电子工程学院, 山西 太原 030006
基于描述超材料中超短脉冲传输的高阶非线性薛定谔方程,采用行波法得到一种精确的飞秒准亮孤子解及其存在条件。研究发现,在群速度色散、三阶色散、三次-五次非线性、自陡峭和二阶非线性色散效应的精确平衡下,超材料中可存在该飞秒准孤子;当三阶色散和二阶非线性色散不存在时,该准孤子无法存在。基于Drude模型,详细讨论了不同非线性超材料中该飞秒准亮孤子存在的不同折射区域。结果表明,该飞秒准孤子可存在于自散焦非线性超材料的负折射区和自聚焦非线性超材料的正折射区,而且在不同区域具有不同的脉冲强度和宽度。这意味着,通过选择不同非线性超材料和输入电磁波的频率,使其位于相应的存在区域,可以实现对孤子特性的调控。
非线性光学 飞秒准亮孤子 自散焦 自聚焦 非线性超材料 负折射 
光学学报
2020, 40(2): 0219001
作者单位
摘要
南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
研究亚波长负折射光栅透镜的柱矢量光束聚焦效应,探索并分析光栅的材料、几何参数等对聚焦效果的影响。亚波长光栅的-1级衍射效应可实现等效负折射现象,结合等光程原理可设计出聚焦平凹镜。利用柱对称坐标系下的有限元算法,分析不同材料折射率、不同等效负折射率、不同预设焦距对实际聚焦效果的影响。结果表明:材料折射率能影响聚焦场的能量效率;等效负折射率为-1时,焦点尺寸最小;预设焦距越小,焦点尺寸越小。聚焦场中纵向电场的比例是影响聚焦场横向尺寸的决定性因素。因此,合理设定光栅负折射率、材料折射率,优化负折射光栅平凹镜设计,能够获得优化的聚焦效果。本工作为柱矢量光束聚焦场调控及相关领域的微纳结构设计提供了参考。
光栅 亚波长结构 透镜 柱矢量光束 负折射 聚焦 
光学学报
2019, 39(11): 1105001
作者单位
摘要
上海理工大学光电信息与计算机工程学院,上海 200093
本文基于硅基底空气孔型二维光子晶体(photonic crystals),提出了一种可以实现等效负折射和亚波长成像的结构。点光源通过三角形光子晶体出射后在两侧形成两个像点。通过在光子晶体两侧添加光栅,增加了光源的透过率,消除了旁斑对双重像点的影响。当光栅的空气带隙宽度w=0.76a 和到光子晶体的距离dg=0.1a 时,左侧像点image1的最小半宽度达到0.433λ,此时右侧像点image2 达到0.842λ,均小于入射波长。另外,当光源波长在3.19a 到3.26a范围内时,光子晶体可以实现宽光谱的双重亚波长成像。最后,根据点光源和双重像点的位置变化,求出了关于其坐标x, z 的相对关系。
光子晶体 负折射 双重成像 亚波长成像 共聚焦 photonic crystals negative refraction dual imaging subwavelength imaging confocal 
光电工程
2019, 46(8): 180577
作者单位
摘要
上海理工大学光电信息与计算机工程学院, 上海 200093
基于二维光子晶体的负折射和亚波长成像特性,提出了一种可以实现超分辨成像的共聚焦系统,使用时域有限差分法(FDTD)仿真了共聚焦系统的聚焦和成像的过程。在焦点离光子晶体透镜下表面1.55 μm处,横坐标X=4 μm时,焦点半峰全宽(FWHM)为0.593λ,小于入射波长,此时反射光在右侧像点的FWHM达到0.496λ,实现了超分辨成像,并且随着焦点的右移,像点FWHM不断减小。同时,在针孔和焦点位置不变时共聚焦系统的轴向分辨率达到2.2λ
衍射 光子晶体 负折射 共聚焦 亚波长成像 超分辨成像 
激光与光电子学进展
2019, 56(2): 020501

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!