首页 > 论文 > Photonics Research > 6卷 > 8期(pp:805-820)

Intermodal four-wave mixing in silicon waveguides

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

In this work, we report the modeling and the experimental demonstration of intermodal spontaneous as well as stimulated four-wave mixing (FWM) in silicon waveguides. In intermodal FWM, the phase-matching condition is achieved by exploiting the different dispersion profiles of the optical modes in a multimode waveguide. Since both the energy and the wave vectors have to be conserved in the FWM process, this leads to a wide tunability of the generated photon wavelength, allowing us to achieve a large spectral conversion. We measured several waveguides that differ by their widths and demonstrate large signal generation spanning from the pump wavelength (1550 nm) down to 1202 nm. A suited setup evidences that the different waves propagated indeed on different order modes, which supports the modeling. Despite observing a reduced efficiency with respect to intramodal FWM due to the decreased modal overlap, we were able to show a maximum spectral distance between the signal and idler of 979.6 nm with a 1550 nm pump. Our measurements suggest the intermodal FWM is a viable means for large wavelength conversion and heralded photon sources.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000805

基金项目:Provincia Autonoma di Trento supported this research by the (SiQuro) project within the Grandi progetti 2012 call; Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR)10.13039/501100003407 with the PRIN project NEMO (2015KEZNYM).

收稿日期:2018-02-06

录用日期:2018-05-09

网络出版日期:2018-05-10

作者单位    点击查看

Stefano Signorini:Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
Mattia Mancinelli:Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, ItalySM Optics s.r.l., Research Programs, Via John Fitzgerald Kennedy 2, 20871 Vimercate, Italy
Massimo Borghi:Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
Martino Bernard:Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
Mher Ghulinyan:Centre for Materials and Microsystems, Fondazione Bruno Kessler, 38123 Trento, Italy
Georg Pucker:Centre for Materials and Microsystems, Fondazione Bruno Kessler, 38123 Trento, Italy
Lorenzo Pavesi:Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy

联系人作者:Stefano Signorini(stefano.signorini-1@unitn.it)

【1】D. Dai, and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects,” Nanophotonics 3 , 283–311 (2014).

【2】S. Berdagu, and P. Facq, “Mode division multiplexing in optical fibers,” Appl. Opt. 21 , 1950–1955 (1982).

【3】S. Bagheri, and W. M. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2009).

【4】L. W. Luo, N. Ophir, C. P. Chen, L. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5 , 3069 (2014).

【5】Y. Ding, J. Xu, H. Ou, and C. Peuchere, “Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide,” Opt. Express 22 , 127–135 (2014).

【6】M. Ma, and L. Chen, “On-chip silicon mode-selective broadband wavelength conversion based on cross-phase modulation,” in Conference on Lasers and Electro-Optics , OSA Technical Digest (Optical Society of America, 2016), paper?STh3E.3.

【7】Y. Qiu, X. Li, M. Luo, D. Chen, J. Wang, J. Xu, Q. Yang, and S. Yu, “Mode-selective wavelength conversion of OFDM-QPSK signals in a multimode silicon waveguide,” Opt. Express 25 , 4493–4499 (2017).

【8】R. W. Boyd, Nonlinear Optics (Academic, 2003).

【9】M. Borghi, C. Castellan, S. Signorini, A. Trenti, and L. Pavesi, “Nonlinear silicon photonics,” J. Opt. 19 , 093002 (2017).

【10】M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441 , 960–963 (2006).

【11】K. Guo, L. Lin, J. Christensen, E. Christensen, X. Shi, Y. Ding, K. Rottwitt, and H. Ou, “Broadband wavelength conversion in a silicon vertical-dual-slot waveguide,” Opt. Express 25 , 32964–32971 (2017).

【12】R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett. 25 , 539–542 (2013).

【13】H. Pourbeyram, E. Nazemosadat, and A. Mafi, “Detailed investigation of intermodal four-wave mixing in SMF-28: blue-red generation from green,” Opt. Express 23 , 14487–14500 (2015).

【14】W. Pan, Q. Jin, X. Li, and S. Gao, “All-optical wavelength conversion for mode-division multiplexing signals using four-wave mixing in a dual-mode fiber,” J. Opt. Soc. Am. B 32 , 2417–2424 (2015).

【15】S. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24 , 30338–30349 (2016).

【16】J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, G. Zhou, Q. Wu, B. Yan, K. Wang, C. Yu, H. Tam, and P. Wai, “Demonstration of intermodal four-wave mixing by femtosecond pulses centered at 1550?nm in an air-silica photonic crystal fiber,” J. Lightwave Technol. 35 , 2385–2390 (2017).

【17】R. Dupiol, A. Bendahmane, K. Krupa, J. Fatome, A. Tonello, M. Fabert, V. Couderc, S. Wabnitz, and G. Millot, “Intermodal modulational instability in graded-index multimode optical fibers,” Opt. Lett. 42 , 3419–3422 (2017).

【18】F. Parmigiani, Y. Jung, S. M. M. Friis, Q. Kang, I. Begleris, P. Horak, K. Rottwitt, P. Petropoulos, and D. J. Richardson, “Study of inter-modal four wave mixing in two few-mode fibres with different phase matching properties,” in Proceedings of 42nd European Conference on Optical Communication (2016).

【19】R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24 , 308–310 (1974).

【20】J. Cheng, M. E. Pedersen, K. Charan, K. Wang, C. Xu, L. Grner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett. 101 , 161106 (2012).

【21】H. Tu, Z. Jiang, D. L. Marks, and S. A. Boppart, “Intermodal four-wave mixing from femtosecond pulse-pumped photonic crystal fiber,” Appl. Phys. Lett. 94 , 101109 (2009).

【22】S. Signorini, M. Mancinelli, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “Broad wavelength generation and conversion with multi modal four wave mixing in silicon waveguides,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2017), pp.?59–60.

【23】E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8 , 15819 (2017).

【24】J. G. Crowder, S. D. Smith, A. Vass, and J. Keddie, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics (Springer, 2006), pp.?595–613.

【25】M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8 , 15184 (2017).

【26】B. Kuyken, P. Verheyen, P. Tannouri, X. Liu, J. Van Campenhout, R. Baets, W. Green, and G. Roelkens, “Generation of 3.6??μm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion,” Opt. Lett. 39 , 1349–1352 (2014).

【27】S. K. Liao, H. L. Yong, C. Liu, G. L. Shentu, D. D. Li, J. Lin, H. Dai, S. Q. Zhao, B. Li, J. Y. Guan, W. Chen, Y. H. Gong, Y. Li, Z. H. Lin, G. S. Pan, J. S. Pelc, M. M. Fejer, W. Z. Zhang, W. Y. Liu, J. Yin, J. G. Ren, X. B. Wang, Q. Zhang, C. Z. Peng, and J. W. Pan, “Long-distance free-space quantum key distribution in daylight towards inter-satellite communication,” Nat. Photonics 11 , 509–513 (2017).

【28】A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14 , 4357–4362 (2006).

【29】C. Lin, and M. A. Bsch, “Large-Stokes-shift stimulated four-photon mixing in optical fibers,” Appl. Phys. Lett. 38 , 479–481 (1981).

【30】Y. Xiao, R. J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, and G. P. Agrawal, “Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers,” Opt. Express 22 , 32039–32059 (2014).

【31】X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics 6 , 667–671 (2012).

【32】Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14 , 4786–4799 (2006).

【33】M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15 , 12949–12958 (2007).

【34】W. S. Chang, Fundamentals of Guided-Wave Optoelectronic Devices (Cambridge University, 2009).

【35】S. Signorini, M. Borghi, M. Mancinelli, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “Oblique beams interference for mode selection in multimode silicon waveguides,” J. Appl. Phys. 122 , 113106 (2017).

【36】G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).

【37】R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1 , 162–235 (2009).

引用该论文

Stefano Signorini, Mattia Mancinelli, Massimo Borghi, Martino Bernard, Mher Ghulinyan, Georg Pucker, and Lorenzo Pavesi, "Intermodal four-wave mixing in silicon waveguides," Photonics Research 6(8), 805-820 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF