Author Affiliations
Abstract
1 Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
2 School of Optoelectronic Engineering and Instrument Science, Dalian University of Technology, Dalian 116081, People’s Republic of China
3 Westinghouse Electric Company LLC, Pittsburgh, PA 15235, United States of America
4 Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany Street, Cambridge, MA 02139, United States of America
The femtosecond laser has emerged as a powerful tool for micro- and nanoscale device fabrication. Through nonlinear ionization processes, nanometer-sized material modifications can be inscribed in transparent materials for device fabrication. This paper describes femtosecond precision inscription of nanograting in silica fiber cores to form both distributed and point fiber sensors for sensing applications in extreme environmental conditions. Through the use of scanning electron microscope imaging and laser processing optimization, high-temperature stable, Type II femtosecond laser modifications were continuously inscribed, point by point, with only an insertion loss at 1 dB m-1 or 0.001 dB per point sensor device. High-temperature performance of fiber sensors was tested at 1000 ℃, which showed a temperature fluctuation of ±5.5 ℃ over 5 days. The low laser-induced insertion loss in optical fibers enabled the fabrication of a 1.4 m, radiation-resilient distributed fiber sensor. The in-pile testing of the distributed fiber sensor further showed that fiber sensors can execute stable and distributed temperature measurements in extreme radiation environments. Overall, this paper demonstrates that femtosecond-laser-fabricated fiber sensors are suitable measurement devices for applications in extreme environments.
femtosecond laser manufacturing optical fiber sensor device fabrication extreme environment sensing 
International Journal of Extreme Manufacturing
2021, 3(2): 025401
Author Affiliations
Abstract
1 Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, People’s Republic of China
2 EPSRC Hub in Future Metrology, Centre for Precision Technologies, University of Huddersfield, Huddersfield, United Kingdom
3 Institute for Materials and Processes, School of Engineering, Sanderson Building, University of Edinburgh, EH9 3FB Scotland, United Kingdom
Fine finishing of tungsten alloy is required to improve the surface quality of molds and precision instruments. Nevertheless, it is difficult to obtain high-quality surfaces as a result of grain boundary steps attributed to differences in properties of two-phase microstructures. This paper presents a theoretical and experimental investigation on chemical mechanical polishing of W–Ni–Fe alloy. The mechanism of the boundary step generation is illustrated and a model of grain boundary step formation is proposed. The mechanism reveals the effects of mechanical and chemical actions in both surface roughness and material removal. The model was verified by the experiments and the results show that appropriately balancing the mechanical and chemical effects restrains the generation of boundary steps and leads to a fine surface quality with a high removal rate by citric acid-based slurry.
chemical mechanical polishing W–Ni–Fe alloy grain boundary step modelling mechanism 
International Journal of Extreme Manufacturing
2021, 3(2): 025103
Chengjun Zhang 1,2Qing Yang 1,2Jiale Yong 2,3Chao Shan 2,3[ ... ]Feng Chen 2,3,*
Author Affiliations
Abstract
1 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
2 The International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
3 State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Liquid metal (LM) has potential applications in flexible electronics due to its high electrical conductivity and high flexibility. However, common methods of printing LM circuits on soft substrates lack controllability, precision, and the ability to repair a damaged circuit. In this paper, we propose a method that uses a magnetic field to guide a magnetic LM (MLM) droplet to print and repair a flexible LM circuit on a femtosecond (fs) laser-patterned silicone surface. After mixing magnetic iron (Fe) particles into LM, the movement of the resultant MLM droplet could be controlled by a magnetic field. A patterned structure composed of the untreated flat domain and the LM-repellent rough microstructure produced by fs laser ablation was prepared on the silicone substrate. As an MLM droplet was guided onto the designed pattern, a soft LM circuit with smooth, uniform, and high-precision LM lines was obtained. Interestingly, the MLM droplet could also be guided to repair the circuit broken LM lines, and the repaired circuit maintained its original electrical properties. A flexible tensile sensor was prepared based on the printed LM circuit, which detected the bending degree of a finger. Supplementary material for this article is available online
liquid metal flexible circuit femtosecond laser magnetic control supermetalphobic microstructure 
International Journal of Extreme Manufacturing
2021, 3(2): 025102
Author Affiliations
Abstract
1 Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of China
2 Nano-Manufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People’s Republic of China
Incorporating high-entropy alloys (HEAs) in composite microlattice structures yields superior mechanical performance and desirable functional properties compared to conventional metallic lattices. However, the modulus mismatch and relatively poor adhesion between the soft polymer core and stiff metallic film coating often results in film delamination and brittle strut fracture at relatively low strain levels (typically below 10%). In this work, we demonstrate that optimizing the HEA film thickness of a CoCrNiFe-coated microlattice completely suppresses delamination, significantly delays the onset of strut fracture (~100% increase in compressive strain), and increases the specific strength by up to 50%. This work presents an efficient strategy to improve the properties of metal-composite mechanical metamaterials for structural applications.
high-entropy alloy microlattice mechanical metamaterials microstructure thin film 
International Journal of Extreme Manufacturing
2021, 3(2): 025101
Author Affiliations
Abstract
1 Department of Mechanical Engineering, Imperial College London, SW7 2AZ London, United Kingdom
2 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
3 Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus
The lubricant behaviour at elevated temperatures was investigated by conducting pin-on-disc tests between P20 tool steel and AA7075 aluminium alloy. The effects of temperature, initial lubricant volume, contact pressure and sliding speed on the lubricant behaviour (i.e. evolutions of the coefficient of friction (COF) and the breakdown phenomenon) were experimentally studied. The evolutions of COF at elevated temperatures consisted of three distinct stages with different friction mechanisms. The first stage (stage I) occurred with low friction when the boundary lubrication was present. The second stage (stage II) was the transition process in which the COF rapidly increased as the lubricant film thickness decreased to a critical value. In the final plateau stage (stage III), lubricant breakdown occurred and intimate contact at the interface led to high friction values. At the low friction stage (stage I), the value of COF increased with increasing temperature. The increase in temperature, contact pressure and sliding speed as well as the decrease in initial lubricant volume accelerated the lubricant breakdown.
elevated temperatures friction evolution lubricant breakdown behaviour pin-on-disc test 
International Journal of Extreme Manufacturing
2021, 3(2): 025002
Author Affiliations
Abstract
1 Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong,Sha Tin, Hong Kong, People’s Republic of China
2 CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
3 Chengdu Fine Optical Engineering Research Center, Chengdu 610041, People’s Republic of China
Several natural organism can change shape under external stimuli. These natural phenomena have inspired a vast amount of research on exploration and implementation of reconfigurable shape transformation. The Janus structure is a promising approach to achieve shape transformation based on its heterogeneous chemical or physical properties on opposite sides. However, the heterogeneity is generally realized by multi-step processing, different materials, and/or different processing parameters. Here, we present a simple and flexible method of producing pH-sensitive Janus microactuators from a single material, using the same laser printing parameters. These microactuators exhibit reversible structural deformations with large bending angles of ~31° and fast response (~0.2 s) by changing the pH value of the aqueous environment. Benefited from the high flexibility of the laser printing technique and the spatial arrangements, pillar heights, and bending directions of microactuators are readily controlled, enabling a variety of switchable ordered patterns and complex petal-like structures on flat surfaces and inside microchannels. Finally, we explore the potential applications of this method in information encryption/decryption and microtarget capturing. Supplementary material for this article is available online
micro actuator smart material pH hydrogel Janus structure laser printing 
International Journal of Extreme Manufacturing
2021, 3(2): 025001
Deyuan Zhang 1,2,3Zhenyu Shao 1,2Daxi Geng 1,2,3,*Xinggang Jiang 1,2,3[ ... ]Shaomin Li 1,2
Author Affiliations
Abstract
1 School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
2 The Institute of Bionic and Micro-Nano Systems, Beihang University, Beijing 100191, China
3 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
Carbon fiber reinforced plastic (CFRP) has been applied in aeronautics, aerospace, automotive and medical industries due to its superior mechanical properties. However, due to its difficult-to-cut characteristic, various damages in twist drilling and chip removal clog in core drilling could happen, inevitably reducing hole quality and hole-manufacturing efficiency. This paper proposes the wave-motion milling (WMM) method for CFRP hole-manufacturing to improve hole quality. This paper presents a motion path model based on the kinematics of the WMM method. The wave-motion cutting mode in WMM was analyzed first. Then, comparison experiments on WMM and conventional helical milling (CHM) of CFRP were carried out under dry conditions. The results showed that the hole surface quality of the CFRP significantly improved with a decrease of 18.1%–36% of Ra value in WMM compared to CHM. WMM exerted a significantly weaker thrust force than that of CHM with a reduction of 12.0%–24.9% and 3%–7.7% for different axial feed per tooth and tangential feed per tooth, respectively. Meanwhile, the hole exit damages significantly decreased in WMM. The average tear length at the hole exit in WMM was reduced by 3.5%–29.5% and 35.5%–44.7% at different axial feed per tooth and tangential feed per tooth, respectively. Moreover, WMM significantly alleviated tool wear. The experimental results suggest that WMM is an effective and promising strategy for CFRP hole-manufacturing.
carbon fiber reinforced plastic wave-motion milling cutting force surface integrity 
International Journal of Extreme Manufacturing
2021, 3(1): 010401
Author Affiliations
Abstract
1 Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
2 Institute of Materials Research and Engineering (IMRE), ASTAR, 138634, Singapore
Integrating micro-optical components at the end facet of an optical fiber enables compact optics to shape the output beam (e.g. collimating, focusing, and coupling to free space elements or photonic integrated circuits). However, the scalability of this approach is a longstanding challenge as these components must be aligned onto individual fiber facets. In this paper, we propose a socket that enables easy slotting of fibers, self-alignment, and coupling onto micro-optical components. This integrated socket can be detached from the substrate upon fiber insertion to create a stand-alone optical system. Fabrication is done using nanoscale 3D printing via two-photon polymerization lithography onto glass substrates, which allows multiple sockets to be patterned in a single print. We investigated variations in socket design and evaluated the performance of optical elements for telecom wavelengths. We obtained an alignment accuracy of ~3.5 μm. These socket designs can be customized for high efficiency chip to fiber coupling and extended to other spectral ranges for free-form optics.
integrated socket alignment fiber slotting fiber connector two-photon polymerization lithography 
International Journal of Extreme Manufacturing
2021, 3(1): 015301
Author Affiliations
Abstract
1 Applied Laser Technologies, Ruhr-University Bochum, Universittsstr. 150, 44801 Bochum, Germany
2 Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6115, United States of America
3 Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996-2100, United States of America
4 Center for Interface-Dominated High Performance Materials, Ruhr-University Bochum, Universittsstr. 150, 44801 Bochum, Germany
5 Institute for Materials, Ruhr-University Bochum, Universittsstr. 150, 44801 Bochum, Germany
Progress in materials development is often paced by the time required to produce and evaluate a large number of alloys with different chemical compositions. This applies especially to refractory high-entropy alloys (RHEAs), which are difficult to synthesize and process by conventional methods. To evaluate a possible way to accelerate the process, high-throughput laser metal deposition was used in this work to prepare a quinary RHEA, TiZrNbHfTa, as well as its quaternary and ternary subsystems by in-situ alloying of elemental powders. Compositionally graded variants of the quinary RHEA were also analyzed. Our results show that the influence of various parameters such as powder shape and purity, alloy composition, and especially the solidification range, on the processability, microstructure, porosity, and mechanical properties can be investigated rapidly. The strength of these alloys was mainly affected by the oxygen and nitrogen contents of the starting powders, while substitutional solid solution strengthening played a minor role.
high-entropy alloy HfNbTaTiZr refractory powder blend laser metal deposition additive manufacturing high-throughput synthesis 
International Journal of Extreme Manufacturing
2021, 3(1): 015201
Author Affiliations
Abstract
1 Centre for Advanced Material Processing and Manufacturing (AMPAM), School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Australia
2 DMTC Ltd., Hawthorn, Melbourne, Victoria, Australia
3 Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Melbourne, Victoria, Australia
4 School of Engineering and Built Environment, Griffith University, Gold Coast, Queensland, Australia
Several detailed studies have comprehensively investigated the benefits and limitations of laser-assisted machining (LAM) of titanium alloys. These studies have highlighted the positive impact of the application of laser preheating on reducing cutting forces and improving productivity but have also identified the detrimental effect of LAM on tool life. This paper seeks to evaluate a series of the most common cutting tools with different coating types used in the machining of titanium alloys to identify whether coating type has a dramatic effect on the dominant tool wear mechanisms active during the process. The findings provide a clear illustration that the challenges facing the application of LAM are associated with the development of new types of cutting tools which are not subjected to the diffusion-controlled wear processes that dominate the performance of current cutting tools.
laser-assisted machining tool life tool wear titanium alloys 
International Journal of Extreme Manufacturing
2021, 3(1): 015001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!