Sizhe Xing 1,2Junwen Zhang 1,2,*Wangwei Shen 1,2An Yan 1,2[ ... ]Nan Chi 1,2
Author Affiliations
Abstract
1 Key Laboratory of EMW Information (MoE), Fudan University, Shanghai 200433, China
2 Department of Communication Science and Engineering, Shanghai ERC of LEO Satellite Communication and Applications, Shanghai CIC of LEO Satellite Communication Technology, Fudan University, Shanghai 200433, China
3 Department of Electronic Engineering, Jinan University, Guangzhou 510632, China
4 School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
Increasing bandwidth requirements have posed significant challenges for traditional access networks. It is difficult for intensity modulation/direct detection to meet the power budget and flexibility requirements of the next-generation passive optical network (PON) at 100G and beyond considering the new requirements. This is driving researchers to develop novel optical access technologies. Low-cost, wide-coverage, and high-flexibility coherent PON is emerging as a strong contender in the competition. In this article, we will review technologies that reduce the complexity of coherent PON (CPON), enabling it to meet the commercial requirements. Also, advanced algorithms and architectures that can enhance system coverage and flexibility are also discussed.
access network coherent optics flexible data rate low complexity wide dynamic range 
Chinese Optics Letters
2024, 22(4): 040604
Author Affiliations
Abstract
1 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Opto-electronics Engineering, Anhui University, Hefei 230601, China
2 School of Instrument Science and Opto-electronics Engineering, Laboratory of Optical Fibers and Micro-nano Photonics, Hefei University of Technology, Hefei 230009, China
3 School of Opto-electronic Engineering, Zaozhuang University, Zaozhuang 277160, China
Random lasers are a type of lasers that lack typical resonator structures, offering benefits such as easy integration, low cost, and low spatial coherence. These features make them popular for speckle-free imaging and random number generation. However, due to their high threshold and phase instability, the production of picosecond random lasers has still been a challenge. In this work, we have developed three dyes incorporating polymer optical fibers doped with various scattering nanoparticles to produce short-pulsed random fiber lasers. Notably, stable picosecond random laser emission lasting 600 ps is observed at a low pump energy of 50 µJ, indicating the gain-switching mechanism. Population inversion and gain undergo an abrupt surge as the intensity of the continuously pumped light nears the threshold level. When the intensity of the continuously pumped light reaches a specific value, the number of inversion populations in the “scattering cavity” surpasses the threshold rapidly. Simulation results based on a model that considers power-dependent gain saturation confirmed the above phenomenon. This research helps expand the understanding of the dynamics behind random medium-stimulated emission in random lasers and opens up possibilities for mode locking in these systems.
random laser polymer optical fiber gain-switched laser picosecond pulse 
Chinese Optics Letters
2024, 22(4): 040603
Author Affiliations
Abstract
Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
Data exchange between different mode channels is essential in the optical communication network with mode-division multiplexing (MDM). However, there are challenges in realizing mode exchange with low insert loss, low mode crosstalk, and high integration. Here, we designed and fabricated a mode exchange device based on multiplane light conversion (MPLC), which supports the transmission of LP01, LP11a, LP11b, and LP21 modes in the C-band and L-band. The simulated exchanged mode purities are greater than 85%. The phase masks were fabricated on a silicon substrate to facilitate the integration with optical systems, with an insert loss of less than 2.2 dB and mode crosstalk below -21 dB due primarily to machining inaccuracies and alignment errors. We carried out an optical communication experiment with 10 Gbit/s OOK and QPSK data transmission at the wavelength of 1550 nm and obtained excellent performance with the device. It paves the way for flexible data exchange as a building block in MDM optical communication networks.
mode exchange mode-division multiplexing multiplane light conversion 
Chinese Optics Letters
2024, 22(3): 030602
Author Affiliations
Abstract
Key Laboratory of Specialty Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
In this paper, we demonstrate a high-sensitivity and real-time heterodyne coherent optical transceiver for intraplane satellite communication, without digital-to-analog converter (DAC) devices and an optical phase lock loop (OPLL). Based on the scheme, a real-time sensitivity of -49 dBm is achieved at 5 Gbps QPSK. Because DAC is not needed at the transmitter, as well as OPLL at the receiver, this reduces the system cost. Furthermore, the least required Rx ADC bit-width is also discussed. Through theoretical analysis and experimental results, our cost-effective transceiver satisfies the scenario and could be a promising component for future application.
real-time coherent transceiver heterodyning intraplane satellite optical communication 
Chinese Optics Letters
2024, 22(3): 030601
Author Affiliations
Abstract
1 School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China
2 Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Laboratory for Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
In this paper, we present a fast mode decomposition method for few-mode fibers, utilizing a lightweight neural network called MobileNetV3-Light. This method can quickly and accurately predict the amplitude and phase information of different modes, enabling us to fully characterize the optical field without the need for expensive experimental equipment. We train the MobileNetV3-Light using simulated near-field optical field maps, and evaluate its performance using both simulated and reconstructed near-field optical field maps. To validate the effectiveness of this method, we conduct mode decomposition experiments on a few-mode fiber supporting six linear polarization (LP) modes (LP01, LP11e, LP11o, LP21e, LP21o, LP02). The results demonstrate a remarkable average correlation of 0.9995 between our simulated and reconstructed near-field light-field maps. And the mode decomposition speed is about 6 ms per frame, indicating its powerful real-time processing capability. In addition, the proposed network model is compact, with a size of only 6.5 MB, making it well suited for deployment on portable mobile devices.
deep learning lightweight neural network few-mode fiber mode decomposition 
Chinese Optics Letters
2024, 22(2): 020604
Author Affiliations
Abstract
1 Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China
2 Peng Cheng Laboratory, Shenzhen 518038, China
In this Letter, we propose and experimentally demonstrate a lens-free wavefront shaping method that utilizes synchronized signal block beam alignment and a genetic algorithm (SSBGA) for a diffuse non-line-of-sight (NLOS) visible light communication (VLC) system. The proposed method effectively controls the position and mobility of visible light beams by partitioning spatial light modulator pixels and manipulating beams to converge at distinct spatial positions, thereby enhancing wavefront shaping efficiency, which achieves a significant 23.9 dB optical power enhancement at +2 mm offset, surpassing the lens-based continuous sequence (CS) scheme by 21.7 dB. At +40° angle, the improvement reaches up to 11.8 dB and 16.8 dB compared to the results with and without lens-based CS, respectively. A maximum rate of 5.16 Gbps is successfully achieved using bit-power loading discrete multi-tone (DMT) modulation and the proposed SSBGA in an NLOS VLC system, which outperforms the lens-based CS by 1.07 Gbps and obtains a power saving of 55.6% during the transmission at 4 Gbps. To the best of our knowledge, this is the first time that high-speed communication has been realized in an NLOS VLC system without a lens.
non-line-of-sight, lens-free wavefront shaping visible light communication 
Chinese Optics Letters
2024, 22(2): 020603
Author Affiliations
Abstract
School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
In order to alleviate the impact of turbulence on the performance of underwater wireless optical communication (UWOC) in real time, and achieve high-speed real-time transmission and low cost and miniaturization of equipment, a 2×2 real-time multiple-input and multiple-output (MIMO) high-speed miniaturized UWOC system based on a field-programmable gate array (FPGA) and a high-power light-emitting diode (LED) array is designed in this Letter. In terms of multiplexing gain, the imaging MIMO spatial multiplexing and high-order modulation for the first time are combined and the real-time high-speed transmission of PAM-4 signal based on the LED array light source in 12 m underwater channel at 100 Mbps rate is implemented, which effectively improves the throughput of the UWOC system with a high-power commercial LED light source. In light of diversity gain, the system employs the diversity of repeated coding scheme to receive two identical non-return-to-zero on-off keying (NRZ-OOK) signals, which can compensate the fading or flickering sublinks in real time under the bubble-like simulated turbulence condition, and has high robustness. To our knowledge, this is the first instance of a high rate and long-distance implementation of a turbulence-resistant real-time MIMO miniaturized UWOC system based on FPGA and high-power LED arrays. With spatial diversity or spatial multiplexing capabilities, its low cost, integrity, and high robustness provide the system with important practical prospects.
underwater wireless optical communication MIMO spatial diversity spatial multiplexing 
Chinese Optics Letters
2024, 22(2): 020601
Author Affiliations
Abstract
1 School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
2 Beijing Research Institute of Telemetry, Beijing 100094, China
We introduce an all-optical approach, optical parametric amplification (OPA) processor to suppress the impact of Sun outage in laser satellite communication systems, which is implemented by only one nonlinear semiconductor optical amplifier driven by both electrical and optical pumps. The optimized OPA processor, with a current of 539 mA and a pump-to-signal ratio of 16 dB, could significantly improve the signal quality by 3.5 dB in experiments for the elevation angle of Sun radiation of 0 rad. The signal quality improvement is observed in the whole range of the elevation angle, confirming the effectiveness of the proposed OPA processor in the field of Sun radiation mitigation.
nonlinear optics Sun outage laser satellite communication 
Chinese Optics Letters
2024, 22(2): 020602
Author Affiliations
Abstract
1 Institute for Photonics and Advanced Sensing and School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
2 Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav), Adelaide, SA, Australia
3 Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
4 Laser Physics and Photonics Devices Laboratory, University of South Australia, Mawson Lakes, SA 5095, Australia
The propagation of coherent light in multimode optical fibers results in a speckled output that is both complex and sensitive to environmental effects. These properties can be a powerful tool for sensing, as small perturbations lead to significant changes in the output of the fiber. However, the mechanism to encode spatially resolved sensing information into the speckle pattern and the ability to extract this information are thus far unclear. In this paper, we demonstrate that spatially dependent mode coupling is crucial to achieving spatially resolved measurements. We leverage machine learning to quantitatively extract the spatially resolved sensing information from three fiber types with dramatically different characteristics and demonstrate that the fiber with the highest degree of spatially dependent mode coupling provides the greatest accuracy.
Photonics Research
2024, 12(3): 411
Qi Wu 1,2Yixiao Zhu 2,4,*Xueyang Li 1,5,*Hexun Jiang 2[ ... ]Weisheng Hu 1,2
Author Affiliations
Abstract
1 Peng Cheng Laboratory, Shenzhen 518055, China
2 State Key Laboratory of Advanced Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3 School of Electronics and Information Technology and Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou 510006, China
4 e-mail: yixiaozhu@sjtu.edu.cn
5 e-mail: xueyang.li@pcl.ac.cn
Data centers, the engines of the global Internet, rely on powerful high-speed optical interconnects. In optical fiber communication, classic direct detection captures only the intensity of the optical field, while the coherent detection counterpart utilizes both phase and polarization diversities at the expense of requiring a narrow-linewidth and high-stability local oscillator (LO). Herein, we propose and demonstrate a four-dimensional Jones-space optical field recovery (4-D JSFR) scheme without an LO. The polarization-diverse full-field receiver structure captures information encoded in the intensity and phase of both polarizations, which can be subsequently extracted digitally. To our knowledge, our proposed receiver achieves the highest electrical spectral efficiency among existing direct detection systems and potentially provides similar electrical spectral efficiency as standard intradyne coherent detection systems. The fully recovered optical field extends the transmission distance beyond the limitations imposed by fiber chromatic dispersion. Moreover, the LO-free advantage makes 4-D JSFR suitable for photonic integration, offering a spectrally efficient and cost-effective solution for massively parallel data center interconnects. Our results may contribute to the ongoing developments in the theory of optical field recovery and the potential design considerations for future high-speed optical transceivers.
Photonics Research
2024, 12(3): 399

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!