郎中亮 1,2张帆 3吴柄萱 3邵鹏飞 3[ ... ]徐晓嵘 1,3,4,*
作者单位
摘要
1 中国科学技术大学生物医学工程学院,安徽 合肥 230026
2 中国科学技术大学附属第一医院(安徽省立医院)整形外科,安徽 合肥 230001
3 中国科学技术大学精密机械与精密仪器系,安徽 合肥 230027
4 中国科学技术大学苏州高等研究院,江苏 苏州 215123
5 中国科学技术大学电子科学与技术系,安徽 合肥 230026
远程皮肤病学是缓解偏远地区皮肤专科医生缺乏问题的有效手段,但目前的方法存在适用范围有限、严重依赖远程医学专家及显示不够直观等缺陷。为弥补当前研究不足,设计并搭建了一套皮肤肿瘤智能远程会诊系统,该系统兼具无网络环境下的皮肤肿瘤自动筛查和有网络环境下的远程会诊及术前规划功能。性能量化实验结果表明,系统可将虚拟的标注高精度原位投射到成像区域。实验对照结果显示,部署于该系统的深度学习模型在诊断能力上与皮肤科专家相当,并且能够辅助专家更迅速、更精确地做出医疗决策。临床试验进一步证实了该系统的实用性。该系统旨在为医疗资源有限的地区提供帮助,使得当地患者能够进行皮肤肿瘤等多种疾病的早期筛查及治疗。
医用光学 生物技术 远程皮肤病学 人工智能 增强现实 原位投影成像 
中国激光
2024, 51(9): 0907021
姚悦 1,2裴浩杰 1,2李浩 3万嘉晨 1,2[ ... ]马辉 1,2,*
作者单位
摘要
1 清华大学深圳国际研究生院,广东 深圳 518055
2 广东省偏振光学检测与成像工程技术研究中心,广东 深圳 518055
3 北京大学深圳医院病理科,广东 深圳 518036
数字病理技术利用经过数字化的病理样本显微图像及其特征,并配合人工智能技术,实现生物组织病变特征的定量评估和判定,辅助临床医生做出诊断结论。利用偏振光照明和偏振探测可以实现全偏振成像,图像每个像素的偏振特征都包含更加丰富的信息,特别是普通光学成像难以获得的亚细胞超分辨微观结构特征信息,可为病变组织的识别和定量评估提供更为有效的手段。本文总结了全偏振成像技术,并结合典型临床应用归纳总结了全偏振显微图像的数据分析方法和最新进展。
医用光学 全偏振显微成像 偏振数字病理 偏振特征提取 机器学习 
中国激光
2024, 51(9): 0907008
崔瀛书 1,2李怡 2,**李晓松 1,*
作者单位
摘要
1 解放军总医院第五医学中心肿瘤医学部肿瘤内科,北京 100071
2 解放军医学院,北京 100853
近红外光免疫治疗(NIR-PIT)是一种结合抗体和光吸收剂IRDye700DX的新型肿瘤疗法,它既能够激活局部免疫效应,又能够增强肿瘤靶向性,已在不同肿瘤类型的治疗中显示出巨大的应用潜力。大量研究已经证实肿瘤微环境是导致肿瘤不断发展的重要原因,因此NIR-PIT中的光免疫偶联物靶点也已经扩展至肿瘤微环境中非肿瘤细胞的表面蛋白中。利用NIR-PIT局部消除肿瘤微环境中某些具有特定标志物的免疫抑制细胞、血管或肿瘤成纤维细胞,将解除免疫抑制,最大效率发挥机体的正常免疫功能,取得最佳的疗效。主要综述了NIR-PIT的治疗策略和靶向肿瘤微环境的最新研究进展。
医用光学 恶性肿瘤 近红外光免疫疗法 抗体-光吸收剂偶联物 免疫治疗 近红外光 
中国激光
2024, 51(9): 0907010
作者单位
摘要
1 哈尔滨工业大学仪器科学与工程学院,黑龙江 哈尔滨 150080
2 北京大学未来技术学院,北京 100871
超分辨荧光显微镜突破了光学衍射极限造成的空间分辨率限制,使得生物学家能够在生命体和细胞具有活性的状态下,对其功能与结构进行高精度动态记录,有望揭示更多重要的生命现象细节。然而,由于超分辨荧光显微技术的成像视场、深度、分辨率、速度等不易兼得,所以解卷积作为一种最有效且直接的求解逆问题的框架,被广泛应用于增强超分辨显微镜的时空分辨率。研究人员聚焦于通过相应算法设计实现高质量显微图像的重建,在一定程度上克服了超分辨荧光显微镜的硬件限制,可以更好地恢复生物信息。本文首先介绍了解卷积方法的基本原理及其发展历程,接着列举了不同解卷积技术在不同模态下的重建原理和效果以及这些技术在生物学上的应用,最后总结了基于深度学习的解卷积方法在超分辨荧光显微镜技术上的最新进展和未来的发展潜力,并对包括傅里叶环相关的定量评估图像重建质量的方法的最新进展进行了阐述。
显微 解卷积 超分辨显微镜 活细胞成像 计算成像 荧光显微镜 
中国激光
2024, 51(1): 0107002
作者单位
摘要
深圳大学物理与光电工程学院,光电子器件与系统教育部/广东省重点实验室,广东 深圳 518060
高时空分辨可视化技术是脑科学研究的重要工具。荧光显微成像技术在特异性、多样性、图像对比度和时空分辨率等方面具有显著优势,但由于光在组织中的穿透深度有限,无创的荧光成像难以在活体水平获取深层脑区神经血管单元的高分辨结构和功能信息。因此,在脑科学研究中,荧光内窥显微成像技术受到越来越多研究者的青睐。得益于相关科学技术的发展,内窥镜探头在保持高性能的同时,实现了小型化并提供了更大的灵活性,可以植入活体大脑的不同深度处,开展特定深层脑区的功能调控研究。本综述介绍了基于梯度折射率透镜和单根多模光纤这两种探头的植入式荧光内窥显微成像技术及其发展和迭代进程,概述了它们在高分辨活体脑成像研究中的应用,以及在临床神经外科手术中的初步探索性应用。最后,展望了荧光内窥脑成像技术未来的发展前景。
显微 荧光内窥显微成像 活体脑成像 梯度折射率透镜 多模光纤 
中国激光
2024, 51(1): 0107001
赖溥祥 1,2,3,4,*赵麒 1,2周颖颖 1,2程圣福 1,2[ ... ]仲天庭 1,2,**
作者单位
摘要
1 香港理工大学生物医学工程系,香港 九龙999077
2 香港理工大学深圳研究院,广东 深圳 518055
3 香港理工大学光子技术研究院,香港 九龙999077
4 香港理工大学体育科技研究院,香港 九龙999077

光学技术在生物医学中扮演着越来越重要的角色,其非电离辐射、高分辨率、高对比度和对生物组织异变高度灵敏等特性使其非常适用于生物组织的研究,包括成像、传感、治疗、刺激以及控制等。然而由于光折射因子在生物组织中的分布是不均匀的,光在生物组织中的传播会受到很强的散射影响,故纯光学技术的穿透深度和空间分辨率是“鱼和熊掌不可兼得”;高分辨率光学成像应用仅限于样品浅表层,当成像深度增加时分辨率急剧下降。实现光在深层生物组织里的高分辨率成像或应用是人们期盼已久的目标。近年来,为解决这一问题,研究者提出了不同的方法,例如切换到更长的光波长以减小组织散射系数,在信号检测时将漫射光转换为散射不明显的超声信号,逆转或者预先补偿由光的多次散射所带来的相位畸变,或借助光纤等微创光学通道实现深层生物组织的高分辨率光学成像、刺激等。基于团队在深层生物组织光学相关领域多年的耕耘,从光在生物组织中的传播特性出发,梳理和总结了近年来研究人员在光-声结合和光学波前整形技术等方面展开的诸多探索,以及在生物组织操控、成像、光学计算以及人工智能等领域中的应用尝试。虽然尚有诸多不足,但随着硬件设备的更新和计算技术的发展,在不远的将来有望实现活体深层生物组织光学高分辨率应用。在这一求索过程中,新方法和新能力将不断激发新的应用灵感,为光学尤其是生物医学光子学带来全新的理念和机遇。

生物光学 光学成像 生物医学光子学 深层组织 光学波前整形 光声成像 
中国激光
2024, 51(1): 0107003
作者单位
摘要
1 北京航空航天大学仪器科学与光电工程学院,北京 100191
2 北京航空航天大学自动化科学与电气工程学院,北京 100191
3 北京大学分子医学研究所膜生物学国家重点实验室,北京 100871
4 北京航空航天大学精密光机电一体化技术教育部重点实验室,北京 100191
5 北京大学电子学院区域光纤通信网与新型光通信系统国家重点实验室,北京 100871
双光子内窥成像技术是一种基于双光子激发原理的新型内窥成像技术,具有光学层析能力、穿透深度深、光毒性小、无标记成像等技术优势,可以同时实现细胞结构成像和功能成像,在生命科学、临床医学等领域具有巨大的发展潜力。在近十几年的发展中,压电陶瓷扫描式双光子内窥成像技术不断取得突破,并在生物医学成像领域实现了新应用。本文对压电陶瓷扫描式双光子内窥成像技术及其在国内外的研究进展进行了总结,并介绍了该技术在生物医学成像领域的应用。
医用光学 双光子成像 内窥镜 双包层光纤 微型显微物镜 压电陶瓷扫描器 
中国激光
2022, 49(19): 1907003
作者单位
摘要
北京航空航天大学生物与医学工程学院,北京市生物医学工程高精尖创新中心,北京 100083
在过去的几十年中,内窥镜已被用于以微创或无创的方式观察人体内空腔内部或人体内部器官表面,以进行诊断或治疗。然而,临床上常用的普通白光内窥镜和放大内窥镜的分辨率低、对比度差,需要通过病理活检来确诊。近年来,新应用于临床的窄谱技术通过光学或数字滤波的方式利用蓝光照射组织,以强化黏膜表面的细微结构和微血管形态,提高成像对比度,但仍未解决成像分辨率低的问题。因此,白光和窄带光内窥镜无法实现真正的光学活检,严重降低了诊断的准确性。共聚焦内窥镜由于分辨率可达亚微米量级并且具有光学切片的能力,可以呈现出与病理活检高度一致的细胞形态。共聚焦内窥显微成像技术在消化道、皮肤、眼部等疾病的诊断方面具有重要作用。本文对共聚焦内窥显微成像技术进行了简述,主要对荧光共聚焦显微成像和反射式共聚焦显微成像、探头式共聚焦内窥成像技术和整合式共聚焦内窥成像技术进行介绍,讨论了共聚焦内窥显微成像技术在生物医学领域的应用。
显微 内窥镜 共聚焦显微成像 分辨率 光学活检 
中国激光
2022, 49(19): 1907002
作者单位
摘要
1 北京航空航天大学仪器科学与光电工程学院,北京 100191
2 北京航空航天大学医学科学与工程学院,北京 100191
激光具有高亮度、高方向性、高能量、高光束质量等优点,已被广泛应用于工业、传感、通信和医疗等领域,尤其是在医学领域已被用于治疗血管疾病。血栓是一种严重的血管疾病,发病机理较为复杂。血栓会导致血管内血液堵塞,器官供血不足,严重危害人体生命健康。激光技术的快速发展推动了激光医疗的研究进展,脉冲激光以其较高的重复频率、高能量、高峰值功率等优点,在治疗血栓方面具有广阔的应用前景。激光作用于血栓主要通过其与生物组织之间发生的光化学效应、光热效应和光机械效应实现激光溶栓。本文综述了激光在血栓消融方面的应用现状,主要从体外及临床治疗方面进行总结,归纳了激光溶栓的应用进展以及未来可能的发展方向。
激光技术 血栓消融 光化学效应 光热效应 光机械效应 
中国激光
2022, 49(19): 1907001
作者单位
摘要
1 上海理工大学医疗器械与食品学院生物医学工程系,上海介入医疗器械工程技术研究中心,教育部医学光学工程中心,上海 200093
2 四川省绵阳市第三人民医院,四川 绵阳 621000
眼底照相是获取眼部图像的主要技术之一。利用眼底相机对视网膜病变区域进行拍摄可以获得清晰的图像,从获取的图像中能够直接观察到眼球中的渗出物、出血点和微血管瘤,根据检测出的病灶类型、数量和位置等信息可进行糖尿病视网膜病变分类。基于此,本文利用深度神经网络对糖尿病视网膜病变进行自动分类识别,提出了一种体系结构简单、在通用设备上运行速度快的卷积神经网络CA-RepVGG(CA代表Channel Attention,RepVGG为现有模块)。利用单路极简结构的RepVGG模块替代复杂的可使用性较差的模块作为分类模型的主体部位,并选用高效通道注意力机制ECA替代压缩注意力机制SE,以此来提升模型对病变分级的能力。此外,本文还将CA-RepVGG模型与传统的分类模型VGG-16、Inception-V3、ResNet-50和ResNext-50模型进行了比较。从比较结果可以看出,虽然CA-RepVGG模型的参数量最大,但由于其是单分支结构,且只有3×3卷积块,因此它的模型复杂度并不高,分类速度很快,比另外4个模型中分类速度最快的ResNet-50还高出15.3%。另外,利用两个混淆矩阵展示了所提模型的分类结果,其在两个数据集上的准确度都超过了92.4%,精确度不低于91.6%,灵敏度在93.8%以上。从实验结果可知,所提模型不仅可对糖尿病视网膜病变进行分类,而且相比其他现有模型具有一定的优越性。若将该模型应用在临床上,可以提高专业眼科医生在眼科疾病上的诊断效率。
医用光学 眼科 糖尿病视网膜病变分级 眼底照相机 深度学习 眼底图像 自动检测 
中国激光
2022, 49(11): 1107001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!