Meng Guo 1,2,3Hongbo He 1,3,*Kui Yi 1,3Shuying Shao 1,3[ ... ]Jianda Shao 1,3,4
Author Affiliations
Abstract
1 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China
4 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Ultrathin Ge films with thickness of about 15 nm at different deposition temperatures were prepared by electron beam evaporation. Spectral measurement results showed that as the deposition temperature increased from 100°C to 300°C, the transmittance of the films in the wavelength range from 350 nm to 2100 nm decreased. After annealing in air at 500°C, the transmittance significantly increased and approached that of uncoated fused quartz. Based on the Tauc plot method and Mott–Davis–Paracrystalline model, the optical band gap of Ge films was calculated and interpreted. The difference in optical band gap reveals that the deposition temperature has an effect on the optical band gap before annealing, while having little effect on the optical band gap after annealing. Furthermore, due to oxidation of Ge films, the optical band gap was significantly increased to ~5.7 eV after annealing.
Ge films transmittance optical band gap deposition temperature annealing 
Chinese Optics Letters
2020, 18(10): 103101
Author Affiliations
Abstract
Shaanxi Provincial Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710021, China
The plasma-enhanced chemical vapor deposition (PECVD) technique is well suited for fabricating optical filters with continuously variable refractive index profiles; however, it is not clear how the optical and structural properties of thin films differ when deposited on different substrates. Herein, silicon nitride films were deposited on silicon, fused silica, and glass substrates by PECVD, using silane and ammonia, to investigate the effects of the substrate used on the optical properties and structures of the films. All of the deposited films were amorphous. Further, the types and amounts of Si-centered tetrahedral Si–SivN4-v bonds formed were based upon the substrates used; Si–N4 bonds with higher elemental nitrogen content were formed on Si substrates, which lead to obtaining higher refractive indices, and the Si–SiN3 bonds were mainly formed on glass and fused silica substrates. The refractive indices of the films formed on the different substrates had a maximum difference of 0.05 (at 550 nm), the refractive index of SiNx films formed on silicon substrates was 1.83, and the refractive indices of films formed on glass were very close to those formed on fused silica. The deposition rates of these SiNx films are similar, and the extinction coefficients of all the films were lower than 10?4.
thin films plasma-enhanced chemical vapor deposition optical properties structural properties substrate materials 
Chinese Optics Letters
2020, 18(8): 083101
Author Affiliations
Abstract
1 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
2 Nanjing Astronomical Instruments Co., Ltd., Chinese Academy of Sciences, Nanjing 210000, China
The photoelectric properties of conductive films are improved by doping Ag on aluminum-doped zinc oxide (AZO) films by laser induced forward transfer (LIFT). Firstly, the picosecond laser induced transfer mechanism of Ag films was revealed by numerical simulation; then, different-thickness Ag films were deposited on the AZO films by picosecond LIFT. When the film thickness is 30 nm and 50 nm, we have successfully obtained some Ag-AZO films with better optoelectronic properties by adjusting the laser parameters.
LIFT surface treatment AZO film Ag-nanoparticles optoelectronic property 
Chinese Optics Letters
2020, 18(4): 043101
Author Affiliations
Abstract
1 School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China
2 Key Laboratory of THz Technology, Ministry of Education, Chengdu 610054, China
A metal–graphene hybrid metasurface polarization converter is designed in this Letter. The unit cell of the hybrid metasurface is composed of a butterfly-shaped structure whose branches are connected by multi-layer graphene sheets. The proposed device can be reconfigured from linear-to-circular polarization to cross-polarization by changing the Fermi energy of graphene. The simulation results show that for three-layer graphene, the device acts as a linear-to-circular polarization converter when EF = 0 eV and switches to a cross-polarization converter when EF = 0.5 eV. Compared with single-layer graphene, the device with three-layer graphene can maintain the cross-polarization conversion performance under low Fermi energy. Furthermore, two equivalent circuits in the x and y directions are developed to understand the working mechanism of the device.
graphene metasurface polarization converter THz 
Chinese Optics Letters
2020, 18(1): 013102
Author Affiliations
Abstract
State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
In this study, we propose an effective method for the fabrication of annulus micro-/nanostructures by a femtosecond laser doughnut beam. Compared with the traditional Bessel annulus beam shaping system, this method greatly compresses the light propagation path. It is theoretically and experimentally demonstrated that the obtained axial section of the peak envelope in the processing area is two waists of the isosceles triangle. By moving the relative position of the sample, annulus microstructures with different diameters on copper sheet could be fabricated. In addition, laser induced periodic surface structures with controllable direction are fabricated by this optical system.
femtosecond laser pulse shaping doughnut beam laser induced periodic surface structures 
Chinese Optics Letters
2020, 18(1): 013101

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!