Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin Universityhttps://ror.org/00js3aw79, Changchun 130012, China
2 College of Physics, Jilin University, Changchun 130012, China
The fabrication of different perovskite materials with superior properties into lateral heterostructures can greatly improve device performance and polarization sensitivity. However, the sensitivity of perovskites to solvents and environmental factors makes the fabrication of lateral heterojunctions difficult. Here, we realize high-quality perovskite microwire crystal heterojunction arrays using regioselective ion exchange. Photodetectors with responsivity and detectivity up to 748 A W-1 and 8.2×1012 Jones are fabricated. The photodetector exhibits responsivity as high as 13.5 A W-1 at 0 V bias. In addition, the device exhibits ultra-high polarization sensitivity with a dichroic ratio of 5.6, and 81% of its performance was maintained after 144 days of exposure to air.
Photonics Research
2023, 11(12): 2231
Author Affiliations
Abstract
1 School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of Chinahttps://ror.org/04qr3zq92, Chengdu 611731, China
2 Tianfu Xinglong Lake Laboratory, Chengdu 610299, China
3 Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China
4 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China
5 e-mail: sunsong_mtrc@caep.cn
6 e-mail: zhangxs@uestc.edu.cn
In this work, a Si/MoS2 heterojunction photodetector enhanced by hot electron injection through Fano resonance is developed. By preparing Au oligomers using capillary-assisted particle assembly (CAPA) on the silicon substrate with a nanohole array and covering few-layer MoS2 with Au electrodes on top of the oligomer structures, the Fano resonance couples with a Si/MoS2 heterojunction. With on-resonance excitation, Fano resonance generated many hot electrons on the surface of oligomers, and the hot electrons were injected into MoS2, providing an increased current in the photodetector under a bias voltage. The photodetectors exhibited a broadband photoresponse ranging from 450 to 1064 nm, and a large responsivity up to 52 A/W at a wavelength of 785 nm under a bias voltage of 3 V. The demonstrated Fano resonance-enhanced Si/MoS2 heterojunction photodetector provides a strategy to improve the photoresponsivity of two-dimensional materials-based photodetectors for optoelectronic applications in the field of visible and near-infrared detection.
Photonics Research
2023, 11(12): 2159
You Xiao 1,4,*†Xiyuan Cao 2†Xiaoyu Liu 1Lianxi Jia 1[ ... ]Lixing You 1,3
Author Affiliations
Abstract
1 National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences (SIMIT, CAS), Shanghai 200050, China
2 State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
4 e-mail: xiaoyou@mail.sim.ac.cn
5 e-mail: lihao@mail.sim.ac.cn
6 e-mail: wuaimin@mail.sim.ac.cn
Superconducting nanowires enable the operation of outstanding single-photon detectors, which are required particularly for quantum information and weak-light measurement applications. However, the trade-off between detection speed and efficiency, which is related to the filling factors of superconducting nanowires, is still a challenge. Here, we propose a fast, efficient single-photon detector fabricated by integrating ultralow-filling-factor meandered superconducting nanowires atop a photonic crystal (PhC) resonator. This unique structure enables a fast photon response due to the low kinetic inductance of the short nanowires and ensures efficient photon absorption due to the resonant effect of the PhC structure. The proposed detector has a filling factor of only 12% while maintaining a high maximum absorption in our simulation of 90%. The fabricated device exhibits a maximum system detection efficiency of 60%, a maximum count rate of 80 MHz, and a recovery time of only 12 ns, which is three times faster than that of the conventional meandered structure at the same sensing diameter (18 μm). This work helps advance the movement toward high-efficiency, high-speed single-photon detectors and promotes their future application in quantum communication and imaging.
Photonics Research
2023, 11(12): 2128
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin Universityhttps://ror.org/00js3aw79, Changchun 130012, China
2 e-mail: zlt@jlu.edu.cn
3 e-mail: xiewf@jlu.edu.cn
Top-illuminated structure facilitates the integration of organic photodetectors (OPDs) into high-resolution flexible wearable light detection systems by allowing the OPDs to be deposited on the bottom readout circuit. However, constructing this structure poses a challenge as it demands metallic electrodes with both high optical transparency and high electrical conductivity. But to achieve practical sheet resistances, most semitransparent metallic electrodes tend to reflect a large portion of incident light instead of allowing it to be absorbed by the photoactive layer of the OPDs. This, in turn, results in reduced photocurrent generation. To address this issue, a semiconducting germanium (Ge) film is introduced into a sliver (Ag) film, effectively reducing its reflectivity by lessening scattering. The Ge film also changes how the Ag film grows, further reducing its absorption by lowering the critical thickness needed for forming a continuous film. This approach yields a 10 nm metallic electrode with a transmittance of 70%, a reflectivity of 12%, and a sheet resistance of 35.5 Ω/□. Using this metallic electrode, flexible OPDs exhibit a high photo-to-dark current ratio of 2.9×104 and improved mechanical properties. This finding highlights the benefits of the top-illuminated structure, which effectively reduces losses caused by waveguided modes of the incident light.
Photonics Research
2023, 11(12): 2100
Min Zhou 1,2†Yukun Zhao 1,2,4,*†Xiushuo Gu 1Qianyi Zhang 1[ ... ]Shulong Lu 1,2,5,*
Author Affiliations
Abstract
1 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
2 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
3 Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
4 e-mail: ykzhao2017@sinano.ac.cn
5 e-mail: sllu2008@sinano.ac.cn
The fast development of the brain-inspired neuromorphic computing system has ignited an urgent demand for artificial synapses with low power consumption. In this work, it is the first time a light-stimulated low-power synaptic device based on a single GaN nanowire has been demonstrated successfully. In such an artificial synaptic device, the incident light, the electrodes, and the light-generated carriers play the roles of action potential, presynaptic/postsynaptic membrane, and neurotransmitter in a biological synapse, respectively. Compared to those of other synaptic devices based on GaN materials, the energy consumption of the single-GaN-nanowire synaptic device can be reduced by more than 92%, reaching only 2.72×10-12 J. It is proposed that the oxygen element can contribute to the synaptic characteristics by taking the place of the nitrogen site. Moreover, it is found that the dynamic “learning-forgetting” performance of the artificial synapse can resemble the behavior of the human brain, where less time is required to relearn the missing information previously memorized and the memories can be strengthened after relearning. Based on the experimental conductance for long-term potentiation (LTP) and long-term depression (LTD), the simulated network can achieve a high recognition rate up to 90% after only three training epochs. Such few training times can reduce the energy consumption in the supervised learning processes substantially. Therefore, this work paves an effective way for developing single-nanowire-based synapses in the fields of artificial intelligence systems and neuromorphic computing technology requiring low-power consumption.
Photonics Research
2023, 11(10): 1667
Author Affiliations
Abstract
1 GaN Optoelectronic Integration International Cooperation Joint Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunicationshttps://ror.org/043bpky34, Nanjing 210003, China
2 College of Arts & Science, National University of Defense Technology, Changsha 410003, China
3 School of Physical Science and Technology, Southwest University, Chongqing 400715, China
4 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
5 e-mail: yangjunbo@nudt.edu.cn
Micro-nano optomechanical accelerometers are widely used in automobile, aerospace, and other industrial applications. Here, we fabricate mechanical sensing components based on an electrically pumped GaN light-emitting diode (LED) with a beam structure. The relationship between the blueshift of the electroluminescence (EL) spectra and the deformation of the GaN beam structure based on the quantum-confined Stark effect (QCSE) of the InGaN quantum well (QW) structure is studied by introducing an extra mass block. Under the equivalent acceleration condition, in addition to the elastic deformation of GaN-LED, a direct relationship exists between the LED’s spectral shift and the acceleration’s magnitude. The extra mass block (gravitational force: 7.55×10-11 N) induced blueshift of the EL spectra is obtained and shows driven current dependency. A polymer sphere (PS; gravitational force: 3.427×10-12 N) is placed at the center of the beam GaN-LED, and a blueshift of 0.061 nm is observed in the EL spectrum under the injection current of 0.5 mA. The maximum sensitivity of the acceleration is measured to be 0.02 m/s2, and the maximum measurable acceleration is calculated to be 1.8×106 m/s2. It indicates the simultaneous realization of high sensitivity and a broad acceleration measurement range. This work is significant for several applications, including light force measurement and inertial navigation systems with high integration ability.
Photonics Research
2023, 11(9): 1583
Author Affiliations
Abstract
1 Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST)https://ror.org/05kzfa883, Seoul 02792, Republic of Korea
2 Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
Low-intensity light detection necessitates high-responsivity photodetectors. To achieve this, we report In0.53Ga0.47As/InAs/In0.53Ga0.47As quantum well (InAs QW) photo-field-effect-transistors (photo-FETs) integrated on a Si substrate using direct wafer bonding. Structure of the InAs QW channel was carefully designed to achieve higher effective mobility and a narrower bandgap compared with a bulk In0.53Ga0.47As, while suppressing the generation of defects due to lattice relaxations. High-performance 2.6 nm InAs QW photo-FETs were successfully demonstrated with a high on/off ratio of 105 and a high effective mobility of 2370 cm2/(V·s). The outstanding transport characteristics in the InAs QW channel result in an optical responsivity 1.8 times greater than InGaAs photo-FETs and the fast rising/falling times. Further, we experimentally confirmed that the InAs QW photo-FET can detect light in the short-wavelength infrared (SWIR; 1.0–2.5 μm) near 2 μm thanks to bandgap engineering through InAs QW structures. Our result suggests that the InAs QW photo-FET is promising for high-responsivity and extended-range SWIR photodetector applications.
Photonics Research
2023, 11(8): 1465
Jiabing Lu 1†Zesheng Lv 1†Hao Jiang 1,2,3,*
Author Affiliations
Abstract
1 School of Electronics and Information Technology, Sun Yat-sen Universityhttps://ror.org/0064kty71, Guangzhou 510006, China
2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen Universityhttps://ror.org/0064kty71, Guangzhou 510006, China
3 Guangdong Engineering Technology R&D Center of Compound Semiconductors and Devices, Sun Yat-sen Universityhttps://ror.org/0064kty71, Guangzhou 510006, China
Heterojunction field-effect phototransistors using two-dimensional electron gas (2DEG) for carrier transport have great potential in photodetection owing to its large internal gain. A vital factor in this device architecture is the depletion and recovery of the 2DEG under darkness and illumination. This is usually achieved by adding an external gate, which not only increases the complexity of the fabrication and the electrical connection but also has difficulty ensuring low dark current (Idark). Herein, a quasi-pseudomorphic AlGaN heterostructure is proposed to realize the self-depletion and photorecovery of the 2DEG, in which both the barrier and the channel layers are compressively strained, making the piezoelectric and spontaneous polarization reverse, thus depleting the 2DEG and tilting the entire barrier and channel band to form two built-in photogates. The fabricated solar-blind phototransistors exhibit a very low Idark below 7.1×10-10 mA/mm, a superhigh responsivity (R) of 2.9×109 A/W, a record high detectivity (D*) of 4.5×1021 Jones, and an ultrafast response speed at the nanosecond level. The high performance is attributed to the efficient depletion and recovery of the full 2DEG channel by the two photogates, enabling direct detection of the sub-fW signal. This work provides a simple, effective, and easily integrated architecture for carrier control and supersensitive photodetection based on polarization semiconductors.
Photonics Research
2023, 11(7): 1217
Author Affiliations
Abstract
1 School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
2 Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Laboratory of Modern Optical Technologies of the Ministry of Education, Soochow University, Suzhou 215006, China
3 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Photoelectric logic gates (PELGs) are the key component in integrated electronics due to their abilities of signal conversion and logic operations. However, traditional PELGs with fixed architectures can realize only very limited logic functions with relatively low on–off ratios. We present a self-driving polarized photodetector driven by the Dember effect, which yields ambipolar photocurrents through photonic modulation by a nested grating. The ambipolar response is realized by exciting the whispering-gallery mode and localized surface plasmon resonances, which leads to reverse spatial carrier generation and therefore the contrary photocurrent assisted by the Dember effect. We further design a full-functional PELG, which enables all five basic logic functions (“AND”, “OR”, “NOT”, “NAND”, and “NOR”) simultaneously in a single device by using one source and one photodetector only. Such an all-in-one PELG exhibits a strong robustness against structure size, incident wavelength, light power, and half-wave plate modulation, paving a way to the realization of ultracompact high-performance PELGs.
Photonics Research
2023, 11(7): 1148
Author Affiliations
Abstract
1 Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
2 State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Semiconductors (College of Integrated Circuits), Hunan Universityhttps://ror.org/05htk5m33, Changsha 410082, China
3 e-mail: liuxq@hnu.edu.cn
4 e-mail: liaolei@whu.edu.cn
5 e-mail: zouxuming@hnu.edu.cn

With the progress of both photonics and electronics, optoelectronic synapses are considered potential candidates to challenge the von Neumann bottleneck and the field of visual bionics in the era of big data. They are also regarded as the basis for integrated artificial neural networks (ANNs) owing to their flexible optoelectronic tunable properties such as high bandwidth, low power consumption, and high-density integration. Over the recent years, following the emergence of metal halide perovskite (MHP) materials possessing fascinating optoelectronic properties, novel MHP-based optoelectronic synaptic devices have been exploited for numerous applications ranging from artificial vision systems (AVSs) to neuromorphic computing. Herein, we briefly review the application prospects and current status of MHP-based optoelectronic synapses, discuss the basic synaptic behaviors capable of being implemented, and assess their feasibility to mimic biological synapses. Then, we focus on the two-terminal optoelectronic synaptic memristors and three-terminal transistor synaptic phototransistors (SPTs), the two essential apparatus structures for optoelectronic synapses, expounding their basic features and operating mechanisms. Finally, we summarize the recent applications of optoelectronic synapses in neuromorphic systems, including neuromorphic computing, high-order learning behaviors, and neuromorphic vision systems, outlining their potential opportunities and future development directions as neuromorphic devices in the field of artificial intelligence (AI).

Photonics Research
2023, 11(5): 787

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!