应用激光, 2023, 43 (5): 0029, 网络出版: 2024-02-02  

基于修正固有应变理论的金属3D打印过程残余变形预测

Residual Deformation Prediction of Metal 3D Printing Process Based on Modified Inherent Strain Theory
作者单位
1 福建工程学院机械与汽车工程学院,福建 福州 350118
2 福建省汽车电子与电驱动重点实验室(福建工程学院),福建 福州 350118
摘要
针对金属材料3D打印过程模拟异常复杂和耗时问题,以金属材料激光选区熔化(SLM)加工工艺为研究对象,采用修正固有应变方法,实现3D打印过程残余变形的精确快速预测。考虑到3D打印过程的周期性,对连续两个打印层进行热-弹-塑性耦合分析,通过修正固有应变理论,提取3D打印过程等效的修正固有应变载荷;将提取到的修正固有应变逐层施加到弹性有限元模型,实现3D打印过程高效模拟及残余变形精确预测;通过与3D打印完整过程热-固耦合分析及3D打印试验对比,验证修正固有应变方法预测3D打印残余变形的精确性和高效性。
Abstract
To tackle the problem of complexity and time-consuming in simulating the metal 3D printing process, a modified inherent strain method is adopted to achieve accurate and rapid prediction of residual deformation in 3D printing process while taking the metal selective laser melting (SLM) processing process as the research object. Considering the periodicity of 3D printing process, thermal-elastic-plastic coupling analysis is carried out for two successive printing layers, and then the equivalent modified inherent strain load of 3D printing process is extracted based on the modified inherent strain theory. The extracted modified inherent strain is applied to the elastic finite element model layer by layer to realize efficient simulation of 3D printing process and accurate prediction of its residual deformation. At last, the accuracy and efficiency of the modified inherent strain method in predicting 3D printing residual deformation are verified by comparing the results of the thermo-solid coupling analysis and the 3D printing experiment.
参考文献

[1] CHENG L, ZHANG P, BIYIKLI E, et al. Efficient design optimization of variable-density cellular structures for additive manufacturing: theory and experimental validation[J]. Rapid Prototyping Journal, 2017, 23(4): 660-677.

[2] LIU J K, GAYNOR A T, CHEN S K, et al. Current and future trends in topology optimization for additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2018, 57(6): 2457-2483.

[3] ZHANG P, LIU J K, TO A C. Role of anisotropic properties on topology optimization of additive manufactured load bearing structures[J]. Scripta Materialia, 2017, 135: 148-152.

[4] 曹先堃, 罗翔鹏, 段成红. 激光增材制造工业级构件变形快速预测方法研究[J]. 应用激光, 2021, 41(3): 575-582.CAO X K, LUO X P, DUAN C H. Research on fast distortion prediction of industrial-scale parts fabricated by additive manufacturing[J]. Applied Laser, 2021, 41(3): 575-582.

[5] 陈嘉伟, 熊飞宇, 黄辰阳, 等. 金属增材制造数值模拟[J]. 中国科学: 物理学 力学 天文学, 2020, 50(9): 104-128.CHEN J W, XIONG F Y, HUANG C Y, et al. Numerical simulation on metallic additive manufacturing[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50(9): 104-128.

[6] LEE Y S, ZHANG W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion[J]. Additive Manufacturing, 2016, 12: 178-188.

[7] LIAN Y P, GAN Z T, YU C, et al. A cellular automaton finite volume method for microstructure evolution during additive manufacturing[J]. Materials & Design, 2019, 169: 107672.

[8] YAGHI A, AYVAR-SOBERANIS S, MOTURU S, et al. Design against distortion for additive manufacturing[J]. Additive Manufacturing, 2019, 27: 224-235.

[9] CHEN Q, LIANG X, HAYDUKE D, et al. An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering[J]. Additive Manufacturing, 2019, 28: 406-418.

[10] YANG Q C, ZHANG P, CHENG L, et al. Finite element modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive manufacturing[J]. Additive Manufacturing, 2016, 12: 169-177.

[11] MICHALERIS P. Modeling metal deposition in heat transfer analyses of additive manufacturing processes[J]. Finite Elements in Analysis and Design, 2014, 86: 51-60.

[12] HEIGEL J C, MICHALERIS P, REUTZEL E W. Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti-6Al-4V[J]. Additive Manufacturing, 2015, 5: 9-19.

[13] LIANG X, CHEN Q, CHENG L, et al. Modified inherent strain method for efficient prediction of residual deformation in direct metal laser sintered components[J]. Computational Mechanics, 2019, 64(6): 1719-1733.

[14] UEDA Y, FUKUDA K, TANIGAWA M. New measuring method of 3-dimensional residual stresses based on theory of inherent strain[J]. Journal of the Society of Naval Architects of Japan, 1979, 1979(145): 203-211.

[15] YUAN M G, UEDA Y. Prediction of residual stresses in welded T-and I-joints using inherent strains[J]. Journal of Engineering Materials and Technology, 1996, 118(2): 229-234.

[16] DENG D A, MURAKAWA H, LIANG W. Numerical simulation of welding distortion in large structures[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(45/46/47/48): 4613-4627.

[17] MURAKAWA H, DENG D A, MA N S, et al. Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures[J]. Computational Materials Science, 2012, 51(1): 43-52.

[18] LIANG X, CHENG L, CHEN Q, et al. A modified method for estimating inherent strains from detailed process simulation for fast residual distortion prediction of single-walled structures fabricated by directed energy deposition[J]. Additive Manufacturing, 2018, 23: 471-486.

[19] 龚丞, 王丽芳, 朱刚贤, 等. 激光增材制造316L不锈钢熔覆层残余应力的数值模拟研究[J]. 应用激光, 2018, 38(3): 402-408.GONG C, WANG L F, ZHU G X, et al. Numerical simulation of residual stress in 316L stainless steel cladding layer by laser additive manufacturing[J]. Applied Laser, 2018, 38(3): 402-408.

[20] 倪辰旖, 张长东, 刘婷婷, 等. 基于固有应变法的激光选区熔化成形变形趋势预测[J]. 中国激光, 2018, 45(7): 0702004.NI C Y, ZHANG C D, LIU T T, et al. Deformation prediction of metal selective laser melting based on inherent strain method[J]. Chinese Journal of Lasers, 2018, 45(7): 0702004.

[21] 陈小建, 朱海燕, 徐腾养, 等. 固有应变值施加方式的焊接变形仿真研究[J]. 工具技术, 2017, 51(11): 12-16.CHEN X J, ZHU H Y, XU T Y, et al. Research on method of inherent strain applying in welding deformation simulation[J]. Tool Engineering, 2017, 51(11): 12-16.

闫晓磊, 杨瑞涛, 练国富, 余捷. 基于修正固有应变理论的金属3D打印过程残余变形预测[J]. 应用激光, 2023, 43(5): 0029. Yan Xiaolei, Yang Ruitao, Lian Guofu, Yu Jie. Residual Deformation Prediction of Metal 3D Printing Process Based on Modified Inherent Strain Theory[J]. APPLIED LASER, 2023, 43(5): 0029.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!