液晶与显示, 2021, 36 (4): 493, 网络出版: 2021-08-22  

光响应蓝相液晶的研究进展

Research progress of light-responsive blue phase liquid crystal
作者单位
1 北京科技大学 材料科学与工程学院, 北京 100083
2 北京航空航天大学 化学学院, 北京 100191
3 广东省分子聚集发光重点实验室(华南理工大学), 广东 广州 510640
摘要
蓝相液晶作为一种新兴的软3D光子材料受到了越来越多的关注与研究, 其可以自组装为具有周期性立方晶格的3D光子纳米结构, 并且具有优异的光学特性, 如无双折射、响应速度快和选择性反射等。刺激响应的3D纳米结构以及在可见光谱中动态控制其光子带隙是蓝相研究中最令人感兴趣的领域之一, 特别是其中的光响应蓝相液晶的研究受到了广泛的关注, 相较于其他刺激响应型液晶, 其具有远程可控性、精确性和瞬时性等优异的特性。本文主要综述了蓝相液晶的发现及其结构特点, 并详细介绍了近年来光响应蓝相液晶在国内外的研究进展和应用现状。
Abstract
As an emerging soft 3D photonic material, blue phase liquid crystals have attracted growing attention and research. They can self-assemble into a 3D photonic nanostructure with periodic cubic lattices and has excellent optical properties. Such as no birefringence, fast response speed and selective reflection. Stimulus-responsive 3D nanostructures and dynamic control of their photonic band gap in the visible spectrum are one of the most interesting fields in blue phase research, especially the research on photo-responsive blue phase liquid crystals have received extensive attention. Compared with other stimulus-responsive liquid crystals, it has excellent characteristics such as remote controllability, accuracy and transientness. This paper mainly reviews the discovery and structural characteristics of blue phase liquid crystals, and introduces in detail the research advances and application status of photo-responsive blue phase liquid crystals at home and abroad in recent years.
参考文献

[1] REINITZER F. Contributions to the knowledge of cholesterol [J]. Liquid Crystals, 1989, 5(1): 7-18.

[2] GRAY G W. The mesomorphic behaviour of the fatty esters of cholesterol [J]. Journal of the Chemical Society (Resumed), 1956: 3733-3739.

[3] COATES D, GRAY G W. Optical studies of the amorphous liquid-cholesteric liquid crystal transition: the "blue phase" [J]. Physics Letters A, 1973, 45(2): 115-116.

[4] ARMITAGE D, PRICE F P. Calorimetry of liquid crystal phase transitions [J]. Journal De Physique Colloques, 1975, 36(C1): C1-133-C1-136.

[5] SAUPE A. On molecular structure and physical properties of thermotropic liquid crystals [J]. Molecular Crystals, 1969, 7(1): 59-74.

[6] MEIBOOM S, SETHNA J P, ANDERSON P W, et al. Theory of the blue phase of cholesteric liquid crystals [J]. Physical Review Letters, 1981, 46(18): 1216-1219.

[7] WANG L, LI Q. Stimuli-directing self-organized 3D liquid-crystalline nanostructures: From materials design to photonic applications[J]. Advanced Functional Materials, 2016, 26(1): 10-28.

[8] 刘桢, 沈冬, 王骁乾, 等.蓝相液晶材料与光子学器件研究进展 [J].液晶与显示, 2017, 32(5): 325-338.

[9] KUTNJAK Z, GARLAND C W, PASSMORE J L, et al. Supercritical conversion of the third blue phase to the isotropic phase in a highly chiral liquid crystal [J]. Physical Review Letters, 1995, 74(24): 4859-4862.

[10] KIKUCHI H. Liquid crystalline blue phases [M]//KATO T. Liquid Crystalline Functional Assemblies and Their Supramolecular Structures. Berlin, Heidelberg: Springer, 2007: 99-117.

[11] MEMMER R. Computer simulation of chiral liquid crystal phases VIII. Blue phases of the chiral Gay-Berne fluid [J]. Liquid Crystals, 2000, 27(4): 533-546.

[12] MEIBOOM S, SAMMON M, BRINKMAN W F. Lattice of disclinations: the structure of the blue phases of cholesteric liquid crystals [J]. Physical Review A, 1983, 27(1): 438-454.

[13] CHEN Y, WU S T. Electric field-induced monodomain blue phase liquid crystals [J]. Applied Physics Letters, 2013, 102(17): 171110.

[14] BUKUSOGLU E, MARTINEZ-GONZALEZ J A, WANG X G, et al. Strain-induced alignment and phase behavior of blue phase liquid crystals confined to thin films [J]. Soft Matter, 2017, 13(47): 8999-9006.

[15] WANG M, ZOU C, SUN J, et al. Asymmetric tunable photonic bandgaps in Self-organized 3D nanostructure of polymer-stabilized blue phase Ⅰ modulated by voltage polarity [J]. Advanced Functional Materials, 2017, 27(46): 1702261.

[16] BISOYI H K, LI Q. Light-directing chiral liquid crystal nanostructures: from 1D to 3D [J]. Accounts of Chemical Research, 2014, 47(10): 3184-3195.

[17] CAO W Y, MUOZ A, PALFFY-MUHORAY P, et al. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase Ⅱ [J]. Nature Materials, 2002, 1(2): 111-113.

[18] COLES H, MORRIS S. Liquid-crystal lasers [J]. Nature Photonics, 2010, 4(10): 676-685.

[19] YANG J J, ZHAO W D, HE W L, et al. Liquid crystalline blue phase materials with three-dimensional nanostructures [J]. Journal of Materials Chemistry C, 2019, 7(43): 13352-13366.

[20] LIU C K, HUANG W L, FUH A Y G, et al. Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo chiral-doped cholesteric liquid crystals [J]. Journal of Applied Physics, 2012, 111(10): 103114.

[21] RAHMAN M A, SAID S M, YAMANA I, et al. Effects of host liquid crystal composition on the stability of liquid crystalline blue phases [J]. Molecular Crystals and Liquid Crystals, 2015, 608(1): 82-90.

[22] MALIK P, YADAV S, KHUSHBOO.Textural, phase transition and electro-optic studies of polymer-stabilized blue phase liquid crystals [J]. Journal of Molecular Structure, 2019, 1188: 51-56.

[23] VIJAYARAGHAVAN R K, ABRAHAM S, RAO D S S, et al. Light induced generation of stable blue phase in photoresponsive diphenylbutadiene based mesogen [J]. Chemical Communications, 2010, 46(16): 2796-2798.

[24] DAVIS R, DAS S, GEORGE M, et al. Intramolecular charge transfer and photochemical isomerization in donor/acceptor-substituted butadienes [J]. The Journal of Physical Chemistry A, 2001, 105(19): 4790-4798.

[25] KIM D Y, LEE S A, KIM H, et al. An azobenzene-based photochromic liquid crystalline amphiphile for a remote-controllable light shutter [J]. Chemical Communications, 2015, 51(55): 11080-11083.

[26] CHANISHVILI A, CHILAYA G, PETRIASHVILIG, et al. Trans-cis isomerization and the blue phases [J]. Physical Review E, 2005, 71(5): 051705.

[27] WANG L, HE W L, XIAO X, et al. Hysteresis-free blue phase liquid-crystal-stabilized by ZnS nanoparticles [J]. Small, 2012, 8(14): 2189-2193.

[28] ZHENG Z G, SHEN D, HUANG P. Wide blue phase range of chiral nematic liquid crystal doped with bent-shaped molecules [J]. New Journal of Physics, 2010, 12(11): 113018.

[29] GIM M J, HUR S T, PARK K W, et al. Photoisomerization-induced stable liquid crystalline cubic blue phase [J]. Chemical Communications, 2012, 48(80): 9968-9970.

[30] WU Y P, WU S, TIAN X J, et al. Photoinduced reversible gel-sol transitions of dicholesterol-linked azobenzene derivatives through breaking and reforming of van der Waals interactions [J]. Soft Matter, 2011, 7(2): 716-721.

[31] NAKATA M, TAKANISHI Y, WATANABE J, et al. Blue phases induced by doping chiral nematic liquid crystals with nonchiral molecules [J]. Physical Review E, 2003, 68(4): 041710.

[32] YIN L C, WU Y P, GAO J G, MA J J, et al. Optically binary liquid crystalline blue phases induced by one-armed cholesterol-linked azobenzene molecules [J]. Soft Matter, 2015, 11(30): 6145-6151.

[33] KIM D Y, LEE S A, PARK M, et al. Remote-controllable molecular knob in the mesomorphic helical superstructures [J]. Advanced Functional Materials, 2016, 26(24): 4242-4251.

[34] CHOI S S, MORRIS S M, HUCK W T S, et al. Electrically tuneable liquid crystal photonic bandgaps [J]. Advanced Materials, 2009, 21(38/39): 3915-3918.

[35] WHITE T J, BRICKER R L, NATARAJAN L V, et al. Phototunable azobenzene cholesteric liquid crystals with 2000 nm range [J]. Advanced Functional Materials, 2009, 19(21): 3484-3488.

[36] HROZHYK U A, SERAK S V, TABIRYAN N V, et al. Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials [J]. Advanced Materials, 2007, 19(20): 3244-3247.

[37] LIU H Y, WANG C T, HSU C Y, et al. Optically tuneable blue phase photonic band gaps [J]. Applied Physics Letters, 2010, 96(12): 121103.

[38] CHEN X W, WANG L, LI C Y, et al. Light-controllable reflection wavelength of blue phase liquid crystals doped with azobenzene-dimers [J]. Chemical Communications, 2013, 49(86): 10097-10099.

[39] HENZL J, MEHLHORN M, GAWRONSKI H, et al. Reversible cis-trans isomerization of a single azobenzene molecule [J]. Angewandte Chemie International Edition, 2006, 45(4): 603-606.

[40] WEN Y, ZHENG Z G, WANG H F, et al. Photoinduced phase transition behaviours of the liquid crystal blue phase doped with azobenzene bent-shaped molecules [J]. Liquid Crystals, 2012, 39(4): 509-514.

[41] WANG M, HU W, WANG L, et al. Reversible light-directed self-organized 3D liquid crystalline photonic nanostructures doped with azobenzene-functionalized bent-shaped molecules [J]. Journal of Materials Chemistry C, 2018, 6(29): 7740-7744.

[42] LIN T H, LI Y N, WANG C T, et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film [J]. Advanced Materials, 2013, 25(36): 5050-5054.

[43] JIN O Y, FU D W, WEI J, et al. Light-induced wide range color switching of liquid crystal blue phase doped with hydrogen-bonded chiral azobenzene switches [J]. RSC Advances, 2014, 4(54): 28597-28600.

[44] KIM K, HUR S T, KIM S, et al. A well-aligned simple cubic blue phase for a liquid crystal laser [J]. Journal of Materials Chemistry C, 2015, 3(21): 5383-5388.

[45] ZHENG Z G, YUAN C L, HU W, et al. Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal [J]. Advanced Materials, 2017, 29(42): 1703165.

[46] YOSHIDA H, ANUCHA K, OGAWAY, et al. Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals [J]. Physical Review E, 2016, 94(4): 042703.

[47] CHOI H, HIGUCHI H, KIKUCHI H, et al. Fast electro-optic switching in liquid crystal blue phase II [J]. Applied Physics Letters, 2011, 98(13): 131905.

[48] ZHOU K, BISOYI H K, JIN J Q, et al. Light-driven reversible transformation between self-organized simple cubic lattice and helical superstructure enabled by a molecular switch functionalized nanocage [J]. Advanced Materials, 2018, 30(26): 1800237.

[49] LI Y, HUANG S J, ZHOU P C, et al. Polymer-stabilized blue phase liquid crystals for photonic applications [J]. Advanced Materials Technologies, 2016, 1(8): 1600102.

[50] YOKOYAMA S, MASHIKO S, KIKUCHI H, et al. Laser emission from a polymer-stabilized liquid-crystalline blue phase [J]. Advanced Materials, 2006, 18(1): 48-51.

[51] STRATFORD K, HENRICH O, LINTUVUORI J S, et al. Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials [J]. Nature Communications, 2014, 5(1): 3954.

[52] BUKUSOGLU E, WANG X G, MARTINEZ-GONZALEZ J A, et al. Stimuli-responsive cubosomes formed from blue phase liquid crystals [J]. Advanced Materials, 2015, 27(43): 6892-6898.

[53] 马红梅, 孙玉宝.蓝相液晶的旋光特性与消除 [J].液晶与显示, 2018, 33(2): 101-108.

[54] WANG M, ZOU C, LI C Y, et al. Bias-polarity dependent bidirectional modulation of photonic bandgap in a nanoengineered 3D blue phase polymer scaffold for tunable laser application [J]. Advanced Optical Materials, 2018, 6(16): 1800409.

[55] YAN J, LI Y, WU S T. High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal [J]. Optics Letters, 2011, 36(8): 1404-1406.

[56] KIM D Y, LEE S A, KANG D G, et al. Photoresponsive carbohydrate-based giant surfactants: automatic vertical alignment of nematic liquid crystal for the remote-controllable optical device [J]. ACS Applied Materials & Interfaces, 2015, 7(11): 6195-6204.

崔化若, 逯孟丽, 赵东宇. 光响应蓝相液晶的研究进展[J]. 液晶与显示, 2021, 36(4): 493. CUI Hua-ruo, LU Meng-li, ZHAO Dong-yu. Research progress of light-responsive blue phase liquid crystal[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(4): 493.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!