中国激光, 2024, 51 (8): 0801004, 网络出版: 2024-04-17  

高功率大芯径环形光斑可调信号合束器的研究

Ring Light Spot Adjustable Signal Combiner with High Power and Large Core Diameter
作者单位
1 长春理工大学高功率半导体激光国家重点实验室,吉林 长春 130022
2 长春理工大学中山研究院,广东 中山 528437
3 深圳市杰普特光电股份有限公司,广东 深圳 518110
摘要
针对传统高功率光纤激光器焊接不稳定、飞溅量大、难以实现精密焊接的问题,设计了一种光斑可调的信号合束器,首次以50 μm/70 μm/600 μm/620 μm/660 μm大芯径环形双芯光纤作为输出光纤,基于光束非相干合成技术,通过RSoft软件对合束器进行了模拟仿真,分析了其模场变化情况,设计的合束器满足绝热拉锥以及亮度守恒两个原则,调控拉锥比(TR)使其可以实现中心和外环独立工作。采用套管法将7根25 μm/250 μm光纤耦合到一起形成熔锥光纤束,再将其与输出光纤进行熔接,制成了高功率大芯径环形光斑可调信号合束器。此光纤合束器的传输效率≥98%,中心光束质量因子(M2)仅为1.76,此时中心端口输出功率为3.036 kW。而后对合束器进行了耐环境测试,合束器在低温与高温下表现出的传输特性良好。将该光斑可调的环形光斑信号合束器应用到激光器中,通过调节中心和外环激光功率,可以在任何温度环境下实现超高速焊接,为激光复合焊接提供了一种新途径。
Abstract
Objective

Adjustable-ring-mode fiber lasers hold significant application value in the field of lithium battery welding, with the fiber combiner serving as a pivotal component, playing a crucial role in improving the performance of these fiber lasers. Presently, there is a growing body of research dedicated to power improvement and beam quality optimization for signal combiners. This research predominantly revolves around modifying the number of input ports and varying the core diameter of the output fiber. Comparatively, there is a dearth of studies focusing on circular beam adjustable signal combiners. Compared with traditional high-power fiber lasers, the adjustable-ring-mode fiber laser can prevent spattering and improve welding stability. The performance of this combiner is such that the center and external ports can operate independently. Based on this working principle, a signal combiner featuring a large-core-diameter output fiber is fabricated. This combiner attains exceptional transmission efficiency, superior beam quality, and remarkable resistance to high and low temperatures, rendering it suitable for the new field of lithium battery welding.

Methods

Utilizing beam incoherent synthesis technology, a simulation of the beam combiner is conducted using RSoft software. This simulation scrutinizes alterations in its mode field. The designed beam combiner satisfies the principles of adiabatic taper and brightness conservation. The relationship between the taper ratio and input fiber diameter is analyzed, delineating the range of taper ratio that ensures the autonomous operation of inner and outer ring fibers, even with different input fiber diameters. Considering the impact of cone size on cutting and welding processes, the cone size is determined, and the variations in the three mode fields under varying taper ratios are simulated and analyzed. Subsequently, the influence of the hydrofluoric acid solution concentration on the corrosion time and corrosion efficiency is studied, with pretreatment of the input fibers based on the research findings. Finally, the taper fiber bundle is fabricated using the sleeve method, and the fusion cone fiber bundle and output fiber are fused together using a welding machine, culminating in the successful construction of the combiner.

Results and Discussions

The designed fiber combiner exhibits good transmission characteristics, with each port achieving a transmission efficiency of ≥98% (Table 1). As the power levels increase, the temperature at each port increases by 25?35 ℃ (Fig. 7). Each port of the fiber combiner can independently handle power levels exceeding 3 kW, and when operating in tandem, the inner and outer rings collectively handle power levels surpassing 6 kW. This underscores its capacity to perform reliably at higher power levels, ensuring exceptional stability. Furthermore, the beam quality factor (M2) of the central port is 1.76, with the central curve showcasing a good Gaussian distribution. Any defects observed may be attributed to quartz block head (QBH) compatibility. The external port M2 demonstrates remarkable consistency, as elucidated in Table 2, and the maximum M2 value recorded stands at a mere 88.2, underscoring the outstanding beam quality of both the central and outer rings. Compared with previous results, we consider that this combiner represents the best beam-quality performance. Further enhancements can be achieved through adjustments in the taper ratio or a change in the input fiber type. High- and low-temperature resistance tests show that the transmission efficiency of the combiner decreases slightly under both high- and low-temperature conditions; however, it remains above 97% (Fig. 10). This change is more pronounced at low temperatures than at high temperatures, likely attributable to thermal expansion and contraction-induced bending within the adhesive. Notably, an excessive cutting angle leads to greater welding loss.

Conclusions

In this study, we investigate the key components of a ring spot adjustable fiber laser beam combiner. Through theoretical research and simulation experiments, we find that the input fiber cladding diameter measures 100 μm and the TFB diameter is 330 μm. Subsequently, we fabricate a large-core-diameter toroidal beam spot tunable signal bundler with high beam quality, and we accomplish this with a taper ratio of 0.835. In the context of a large-core-diameter circular dual-core fiber, we manufacture a high-beam-quality large-core-diameter circular spot adjustable signal combiner. The overall transmission efficiency of the combiner exceeds 98%, and it exhibits good transmission characteristics. In the beam quality test, the center M2 is 1.76, while the outer ring M2 ranges between 82 and 89. By adjusting the input port, we can direct either circular Gaussian beams or circular flat top beams independently onto the surface of the working material, or simultaneously apply both to the material surface. Finally, we conduct an environmental reliability test on the combiner, subjecting it to three distinct temperature conditions. The results show that the efficiency of each port experiences a slight decline at both high and low temperatures in comparison to that at room temperature. Notably, the transmission efficiency is the lowest at lower temperatures, attributable to cone bending; however, the transmission efficiency still remains above 97%. The all-fiber ring-spot adjustable signal combiner exhibits the advantages of exceptional transmission characteristics, minimal thermal effects, and superior beam quality. Consequently, it holds substantial promise in the growing laser composite welding market. With the further development of laser composite welding, beam-mode adjustable signal combiners featuring varying output core diameters will undergo more extensive research. Additionally, potential modifications to the TFB structure may enable the center of the annular dual-core fiber to withstand higher power output, expanding its applications further.

1 引言

近些年来,激光器在激光切割1-2、焊接3-4等多领域中得到了广泛应用。光纤激光器属于激光器的一个重要分支,高功率光纤激光器具有光束质量高、传输效率好、结构紧凑等优点5-7。特别是随着新能源时代的到来,光纤激光器在锂电池焊接领域中具有很好的应用前景。其中环形光束模式可调光纤激光器主要用于激光复合焊接,其内外环两束激光在环形双芯光纤中传输,通过调节输入端各端口的通光功率,可控制内外环的输出功率8-10。环形可调模式激光器焊接相对于其他焊接方法具有防飞溅、提高焊接稳定性以及更加便捷安全的特性11-13。Mohammadpour等14从钢焊接角度分析了可调环形模式光纤激光器和标准单光束光纤激光器的焊接性能,可调环形模式激光器增加了获得高质量焊缝的可能性。形成环形双光束输出的途径有很多,相比于光束透镜15以及其衍射光学元件16,基于非相干合成技术制作的全光纤结构信号合束器,结构紧凑,合成效率高。

为了提升光纤激光器的性能,现有的研究大多以改变输入光纤和输出光纤的类型和参数为主要手段,对光纤合束器的性能进行了大量的实验研究17-23。2018年,国防科技大学制作了输出光纤直径为50 μm的7×1光学功率合束器17,输出功率为14 kW时光纤输出头温升为35 ℃,温升系数小于2.5 ℃/kW,输出光束质量因子(M2)为5.37。2020年,该课题组制作了输出光纤芯径为50 μm/70 μm/360 μm的3×1功率合束器18,总效率约为99%,M2为6。2021年,该课题组制作了输出光纤芯径为50 μm/400 μm的3×1光纤功率合束器19,在总传输功率为8.95 kW的情况下,合束器的输出功率为8.62 kW,整体传输效率大于96%,M2=4.035。同年,该课题组用氢氟酸腐蚀光纤和低折射率毛细管制作了输出光纤纤芯为50 μm的3×1信号合束器20,总传输效率达到了98%,M2约为3.6。直到2023年,才开始有报道使用环形双芯光纤(50 μm/70 μm/150 μm/170 μm/360 μm)作为输出光纤制作可调环模信号合束器。华中科技大学的Zhou等21提出一种中心光束均匀分布的可调环模全光纤级联信号合束器,该结构由3×1合束器和(6+1)×1合束器串联而成。由于中心光束和环形光束独立传输,该级联合束器的传输效率达96.2%,M2为5.24。国防科技大学的Fu等22采用光纤腐蚀技术保证(6+1)×1光纤合束器的光束质量,将3×1光纤信号合束器与(6+1)×1中心端口级联,M2=4.45,总传输效率大于95%。该级联合束器由于含有3×1光纤信号合束器,未能完全展现(6+1)×1光纤合束器的光束质量。以环形双芯光纤作为输出光纤的(6+1)×1光纤合束器的光束质量有待改善,传输效率可以进一步提高。

拉锥比是影响光束质量的一个重要因素,大多数情况下为了达到更好的耦合效果,需要熔锥光纤束(TFB)的拉锥量较大,光束质量易受到影响。我们使用尽可能接近于1的拉锥比实现耦合,并使用大芯径环形双芯光纤(50 μm/70 μm/600 μm/620 μm/660 μm)作为输出光纤,通过调控拉锥比实现了合束器单独输出中心和外环光束或中心、外环光束的同时输出。通过理论研究与实验,我们制作的合束器在保证高功率输出的同时,M2仅为1.76。另外,由于合束器的应用环境难以预料,开展了耐环境测试,在高低温环境下对合束器进行了传输效率测试,以确保合束器在高温环境和低温环境下都展现出良好的传输特性。

2 理论分析与仿真

(6+1)×1信号合束器一般由7根25 μm/250 μm 输入光纤和1根50 μm/70 μm/600 μm/620 μm/660 μm输出光纤组成。图1展示了RSoft软件仿真的(6+1)×1信号合束器的结构,7根输入光纤被一根全掺氟管束缚住,全掺氟管能够有效地减少泄漏光,其作用相当于给光纤增加了一层涂覆层,从而降低光纤拉锥区损耗。然后固定全掺氟管和光纤束,拉锥使其成为熔锥光纤束,而后将其与输出光纤对接,输出光纤为大芯径环形光纤。TFB中心光纤与输出光纤中心纤芯对接,外圈6根光纤与输出光纤外芯对接。中心光束传输到输出光纤内芯,外环光束传输到输出光纤外芯,中心光束输出光斑为圆形光斑,外环光束输出光斑为圆环光斑,通过调节输入端口的功率,可以实现光斑可调,即通过调节输入端口的功率,可以实现单独输出中心和外环光束或中心外环同时输出,达到光斑可调的效果。

图 1. (6+1)×1信号合束器的结构及TFB和输出光纤的截面

Fig. 1. Structure of (6+1)×1 signal combiner and cross sections of TFB and output fiber

下载图片 查看所有图片

TFB要遵守绝热拉锥和亮度守恒两个原则。绝热拉锥需要控制过渡区长度,当过渡区长度大于10 mm时,传输效率最高23,但过渡区长度过长也会导致封装难度大,因此我们选择15 mm作为过渡区域的长度,后面的锥腰区域我们设置为6 mm。亮度守恒要求满足

B=Dout2·NAout2N·Din2·NAin2

式中:B为亮度比率;DinNAin分别为输入光纤的纤芯直径和数值孔径;N为输入光纤的总数;DoutNAout分别为输出光纤的纤芯直径和数值孔径。通常亮度比率大于1能保证高功率传输24。我们可以认为合束器需要将7根输入光纤的光传输到输出纤芯为600 μm光纤中,因此,B>1时满足亮度守恒原则。

为了实现光斑可调,使中心和外环可以独立工作,拉锥比(TR)是一个重要参数。将熔锥光纤束的拉锥比2025定义为

TR=DATDBT

式中:DAT为TFB拉锥后的芯径;DBT为TFB拉锥前的芯径。我们不难发现,中心输入光纤纤芯直径小于输出光纤内芯直径,拉锥后仍然可以满足。只需要外圈光纤纤芯完全进入输出光纤的外芯,中心和外环激光束即可分别输入到输出光纤内外芯,故选择输出光纤的外芯芯径为70~600 μm。图2展示了TFB横截面上外环输入光束的通光范围,其中DmaxDmin分别表示最大和最小通光直径。为了保证光可以正常传输,Dmin须大于70 μm, Dmax须小于600 μm,经理论计算Dmax的最大值为525 μm,故只考虑Dmin图3展示了输入光纤直径(d)与拉锥比的关系,其中下方的曲线代表Dmin=70 μm时拉锥比随d的变化,深色区域为符合条件的部分。锥体不宜过大,过大难以保证切割的平整度,切割不平整容易在该点产生高阶模,造成该熔接点处高温;也不宜过小,锥体直径与输出光纤直径差距过大容易引起断裂,故我们选择TFB直径为330 μm。通过理论计算预拉前后直径与掺氟管内外径的关系,得到DBT,而后根据拉锥比关系计算出TFB直径为330 μm时拉锥比的数值。图3中的上方曲线表示了TFB直径为330 μm时拉锥比与输入光纤直径的关系。

图 2. TFB横截面上外环输入光束的通光范围

Fig. 2. Transmission range of outer ring input beam on TFB cross section

下载图片 查看所有图片

图 3. 输入光纤直径与拉锥比的关系

Fig. 3. Input fiber diameter versus taper ratio

下载图片 查看所有图片

基于差分光束传播法(BPM)进行了仿真,我们选取LP01、LP02、LP21模式进行了模拟,设置变量为TR图4分别模拟了TR为0.2~1.0时三种模式的占比情况,当TR为0.7时,LP21模式的占比最大,随着拉锥比的增大,LP21模式的占比逐渐减小,当拉锥比接近1时LP21模式的占比几乎为0,主要是LP01和LP02模式。根据图3可知,当输入光纤包层直径为100 μm、TFB直径为330 μm时,拉锥比随腐蚀直径的增大而减小,最大TR为0.835,故我们选择输入光纤包层直径为100 μm、TFB直径为330 μm进行实验验证。

图 4. TR为0.2~1.0时三种模式的占比情况

Fig. 4. Proportion of three modes when TR is 0.2‒1.0

下载图片 查看所有图片

3 实验

在大芯径(6+1)×1信号合束器的制作过程中,我们选用7根25 μm/250 μm(数值孔径为0.065)多模光纤作为输入光纤,50 μm/70 μm/600 μm/620 μm/660 μm(数值孔径为0.22)环形双芯光纤作为输出光纤。低折射率掺氟毛细管的内外径为950 μm/1250 μm,其数值孔径为0.22,在进行锥形光纤束制作之前需要对光纤进行预处理。氢氟酸溶液浓度越高,腐蚀速度越快,选用氢氟酸溶液对光纤包层进行处理,可以有效减小光纤的包层直径,并且纤芯直径不会受到影响,对于改变光纤拉锥比具有重要作用。而后使用电荷耦合元件(CCD)对腐蚀后的光纤进行挑选。

第一步是使用石墨丝拉锥机对掺氟管进行锥形化处理。第二步是基于套管法使用处理后的掺氟管进行穿管处理,将7根腐蚀后的光纤穿入掺氟管,使光纤尽可能均匀整齐,保证管内洁净度。第三步是采用氢氧焰拉锥机进行拉锥,调节好参数,将TFB直径拉至330 μm,在拉锥过程中进行抽气处理,使其耦合得更紧密。第四步是使用切割刀切割锥体,在显微镜下观察端面具体细节。图5展示了合束器TFB的熔接图像,图5(a)为TFB截面图。最后使用熔接机将锥体与输出光纤熔接到一起,完成了样品的制作。使用包层光剥除技术制作包层光剥除器,进而对输出光纤上的包层光进行剥除。由于大芯径输出光纤具有很大的扭力,经过锥形化处理后,掺氟管材质较脆,故最后将样品封装到结构件中以防断裂。

图 5. TFB的熔接图像。(a) TFB截面图;(b)熔接机装置图;(c)熔接点侧视图

Fig. 5. Weld images of TFB. (a) Cross section of TFB; (b) installation diagram of welding machine; (c) side view of weld point

下载图片 查看所有图片

4 结果与讨论

4.1 传输效率测试

设计了光路对合束器进行性能测试,首先进行传输效率测试。图6展示了测试合束器性能的实验装置,使用输出功率为3 kW、输出光纤芯径为25 μm/250 μm、波长为1080 nm的掺镱光纤激光器(YDFL)作为光源,将合束器输入光纤分别与YDFL输出光纤熔接,由于输出光纤芯径较大,故使用大芯径熔接机将自制的50 μm/70 μm/600 μm/620 μm/660 μm光纤的高功率输出头(QBH)与光纤合束器的输出光纤熔接,此时输出功率可以直接由功率计测量。合束器的温度由热像仪监测,特别是对整个系统各个元件熔接点以及合束器光纤束与输出光纤熔接点进行监测,保证系统不会因熔接点产生功率损耗而出现热效应。元件熔接两端光纤的切割角度控制在1°以内,YDFL和高功率输出头采用直接水冷方式,进一步降低系统的热效应。

图 6. 合束器性能测试的实验装置

Fig. 6. Experimental setup for combiner performance test

下载图片 查看所有图片

光源由自制高功率输出头输出的功率为3.092 kW,光源经过合束器后,各端口的最高功率仍能达到3.058 kW。表1展示了信号合束器各端口传输效率的具体数值,可见各端口传输效率均在98%以上。图7展示了输入功率比与温度的关系,在测试过程中温度主要集中在TFB与输出光纤的熔接点处。各端口温度最高为35.4 ℃,中心温度总体低于外环温度,随着功率的上升,熔接点温度升高,最大温升为10 ℃左右。这是由于随着输入功率的增加,TFB内部的基模光有一部分会转变为高阶模。选择传输效率较高的1号端口和3号端口进行合束测试,合束测试功率为6.062 kW。实验结果表明该合束器具有良好的传输特性,合束测试效率在98%以上,各端口能够独立承受3 kW以上的功率,内外环同时工作时可以承受6 kW以上的功率,具有高功率作业能力且性能十分稳定。其中的损耗主要是TFB与大芯径输出光纤的切割角度难以控制引起的。

表 1. 合束器各端口的信号传输效率

Table 1. Signal transmission efficiency of combiner at each port

Port No.Output power /kWEfficiency /%
13.03698.2
23.0398.0
33.05898.9
43.04398.4
53.04698.5
63.03698.2
73.05298.7

查看所有表

图 7. 输入功率比与温度的关系图

Fig. 7. Relationship between input power ratio and temperature

下载图片 查看所有图片

4.2 光束质量测试

对合束器进行光束质量测试,使用激光焦点分析仪测量该合束器的光束质量,光源各端口在二阶矩模式下的M2在1.1左右,经过合束器后测试数据如表2所示,可以看出合束器的1号端口(输出光纤内芯)的输出M2仅为1.76。图8为输出光纤内芯的M2测试数据,该合束器的中心曲线表现出良好的类高斯分布,光纤内芯输出的光束质量高,但仍存在一点瑕疵,这与QBH的匹配有关。另外,根据实验数据分析,发现大芯径光纤切割角度对测试结果也有较大影响。输入光纤外环端口的M2最大,为88.2,图9是外环2号端口的M2测试数据,外环各端口表现出较好的一致性。由内外环端口测试数据可以发现,内外环端口均无漏光现象,验证了中心和外环端口可以独立工作。调节输入端口,可以使圆形高斯光束和圆环状平顶光束分别作用于工作物质表面,也可以使二者同时作用于工作物质表面,因此光纤激光器具有多场景灵活应用的特性。与之前的结果相比,大芯径环形光斑可调信号合束器具有较好的光束质量性能,后续通过调整输入光纤包层直径来调控拉锥比,光束质量仍可以进一步优化。

表 2. 信号合束器各端口的光束质量

Table 2. Beam quality of signal combiner at each port

Port No.M2
11.76
285.8
382.3
488.2
584.7
685.7
787.7

查看所有表

图 8. 中心端口的M2测试数据

Fig. 8. M2 test data at central port

下载图片 查看所有图片

图 9. 外环2号端口的M2测试数据

Fig. 9. M2 test data at outer ring port 2

下载图片 查看所有图片

4.3 耐环境测试

为了验证合束器的耐高低温能力,对该实验样品进行环境可靠性测试。使用高低温循环箱对合束器进行温度测试,温度变化范围为-30~70 ℃,在循环低温以及高温处对产品进行效率测试,图10展示了耐环境测试实验图。由图10(a)、(b)可以看出,合束器在低温时会出现弯曲,而在高温时恢复正常。原因如下:使用胶水将石英底座粘在铝盒上,胶水的伸缩系数很小,底座是蓝宝石,蓝宝石与石英的伸缩量不一致。通过对图10(c)中三种情况下各端口的效率进行分析,发现在低温情况下各端口效率会受一定影响,但影响很小,合束器温度最高上升至40 ℃左右,6号臂纤在高温情况下的测试效率偏低。这是由测试时光纤熔接引起的,合束器面对不同环境总体表现出良好的稳定性,在高低温环境下均可以实现高效率传输,具有良好的工业价值。

图 10. 耐环境测试实验图。(a)低温-30 ℃下的实验样品;(b)高温70 ℃下的实验样品;(c)三种情况下各端口的效率

Fig. 10. Experimental diagrams of environmental resistance test. (a) Experimental sample at low temperature of -30 ℃; (b) experimental sample at high temperature of 70 ℃; (c) efficiencies of each port in three cases

下载图片 查看所有图片

5 结论

对环形光斑可调光纤激光器的关键元器件光纤合束器进行了研究,通过理论研究、仿真实验,发现选择输入光纤包层直径为100 μm,TFB直径为330 μm,TR为0.835可以达到理想效果,而后在该拉锥比下制成了高光束质量的大芯径环形光斑可调信号合束器。该合束器总体传输效率达到98%以上,具有良好的传输特性。在光束质量测试中,其中心M2为1.76,外环M2为82~89。调节输入端口,使圆形高斯光束和圆环状平顶光束分别作用于工作物质表面,也可使二者同时作用于工作物质表面。最后对合束器进行了环境可靠性测试,通过在三种温度条件下对其进行传输效率测试,发现在高低温情况下各端口效率略低于常温下,其中低温情况下的传输效率最低,这与锥区弯曲有关,但传输效率仍在97%以上。该全光纤结构的环形光斑可调信号合束器具有传输效率高、热效应良好、光束质量好等优点,在激光复合焊接市场中具有较好的应用前景。随着激光复合焊接领域的进一步发展,不同输出芯径的光束模式可调信号合束器将得到更广泛的研究。另外,可以进一步改变TFB的结构,使环形光斑双芯光纤中心可以承受更高功率的输出。

参考文献

[1] 严淼宁, 周磊, 梁佳楠, 等. 纳秒光纤激光精密切割超弹镍钛合金薄板工艺技术的研究[J]. 机电工程技术, 2023, 52(1): 85-88.

    Yan M N, Zhou L, Liang J L, et al. Research on nanosecond fiber laser precision cutting process technology of superelastic nitinol sheets[J]. Mechanical & Electrical Engineering Technology, 2023, 52(1): 85-88.

[2] 陈胜, 黄辉宇, 董雄炜, 等. 激光切割技术的研究现状[J]. 有色金属加工, 2022, 51(5): 1-6, 26.

    Chen S, Huang H Y, Dong X W, et al. Research status of laser cutting technology[J]. Nonferrous Metals Processing, 2022, 51(5): 1-6, 26.

[3] Ceglarek D, Colledani M, Váncza J, et al. Rapid deployment of remote laser welding processes in automotive assembly systems[J]. CIRP Annals, 2015, 64(1): 389-394.

[4] Haeusler A, Hollatz S, Olowinsky A, et al. Quality improvement of the surface of laser micro welds by using a dual beam setup[J]. Journal of Laser Applications, 2018, 30(3): 032423.

[5] 杨青, 俞本立, 甄胜来, 等. 光纤激光器的发展现状[J]. 光电子技术与信息, 2002(5): 13-18.

    Yang Q, Yu B L, Zhen S L, et al. The survey of optic fiber lasers[J]. Optoelectronic Technology & Information, 2002(5): 13-18.

[6] 马思烨, 张闻宇, 邱佳欣, 等. 高功率连续光纤激光器技术发展概述[J]. 光纤与电缆及其应用技术, 2019(5): 1-6, 34.

    Ma S Y, Zhang W Y, Qiu J X, et al. Review on technology development of high power CW fiber laser[J]. Optical Fiber & Electric Cable and Their Applications, 2019(5): 1-6, 34.

[7] 焦磊, 宋跃江, 张旭苹. 四波混频增强多波长布里渊掺铒光纤激光器的实验研究[J]. 光学学报, 2011, 31(2): 0214007.

    Jiao L, Song Y J, Zhang X P. Four-wave-mixing enhanced multi-wavelength Brillouin erbium-doped fiber laser[J]. Acta Optica Sinica, 2011, 31(2): 0214007.

[8] 朱加琦. 复合环形光束产生方法及其点焊特点研究[D]. 武汉: 华中科技大学, 2021.

    ZhuJ Q. Study on the method of generating composite annular beam and its spot welding characteristics[D]. Wuhan: Huazhong University of Science and Technology, 2021.

[9] Zhao Y Q, Li X, Liu Z Q, et al. Stability enhancement of molten pool and keyhole for 2195 Al-Li alloy using fiber-diode laser hybrid welding[J]. Journal of Manufacturing Processes, 2023, 85: 724-741.

[10] Wang L, Gao X D, Kong F R. Keyhole dynamic status and spatter behavior during welding of stainless steel with adjustable-ring mode laser beam[J]. Journal of Manufacturing Processes, 2022, 74: 201-219.

[11] Maina M R, Okamoto Y, Okada A, et al. High surface quality welding of aluminum using adjustable ring-mode fiber laser[J]. Journal of Materials Processing Technology, 2018, 258: 180-188.

[12] Wang L, Mohammadpour M, Yang B X, et al. Monitoring of keyhole entrance and molten pool with quality analysis during adjustable ring mode laser welding[J]. Applied Optics, 2020, 59(6): 1576-1584.

[13] Yang H, Tang X H, Hu C, et al. Study on laser welding of copper material by hybrid light source of blue diode laser and fiber laser[J]. Journal of Laser Applications, 2021, 33(3): 032018.

[14] Mohammadpour M, Wang L, Kong F R, et al. Adjustable ring mode and single beam fiber lasers: a performance comparison[J]. Manufacturing Letters, 2020, 25: 50-55.

[15] Volpp J, Vollertsen F. Impact of multi-focus beam shaping on the process stability[J]. Optics & Laser Technology, 2019, 112: 278-283.

[16] Rasch M, Roider C, Kohl S, et al. Shaped laser beam profiles for heat conduction welding of aluminium-copper alloys[J]. Optics and Lasers in Engineering, 2019, 115: 179-189.

[17] 陈子伦, 雷成敏, 王泽锋, 等. 基于输出光纤为50 μm的7×1光纤功率合束器实现大于14 kW的高光束质量光纤激光合成[J]. 中国激光, 2018, 45(4): 0415001.

    Chen Z L, Lei C M, Wang Z F, et al. Based on the 7×1 fiber power combiner with 50 μm output fiber, the high beam quality fiber laser synthesis of more than 14 kW is realized[J]. Chinese Journal of Lasers, 2018, 45(4): 0415001.

[18] Wu W J, Chen Z L, Wang Z F, et al. Beam combining of fiber lasers by a 3×1 signal combiner at a power >13 kW[J]. Optical Fiber Technology, 2020, 54: 102109.

[19] 付敏, 李智贤, 王泽锋, 等. 高光束质量3×1光纤功率合束器的研制[J]. 红外与激光工程, 2022, 51(5): 20210354.

    Fu M, Li Z X, Wang Z F, et al. Research on high beam quality 3×1 fiber signal combiner[J]. Infrared and Laser Engineering, 2022, 51(5): 20210354.

[20] Wu W J, Chen Z L, Wang Z F, et al. Novel 3×1 signal combiner with high-power fiber laser output of high beam quality[J]. Optik, 2021, 225: 165353.

[21] Zhou Y Y, Qiu Q, Yang A B, et al. All-fiber cascaded combiners for high-power adjustable-ring mode laser beam with a flattop central beam[J]. Optics & Laser Technology, 2023, 163: 109324.

[22] Fu M, Wang J W, Li Z X, et al. Research on adjustable ring-mode fiber signal combiner[J]. Photonics, 2023, 10(2): 195.

[23] Zhou H, Chen Z L, Zhou X F, et al. All-fiber 7×1 signal combiner for high power fiber lasers[J]. Applied Optics, 2015, 54(11): 3090-3094.

[24] Zou S Z, Yu H J, Zuo J X, et al. Kilowatt-level 4×1 fiber combiner of low brightness loss with a square core output fiber[J]. Journal of Lightwave Technology, 2021, 39(7): 2130-2135.

[25] Stachowiak D. High-power passive fiber components for all-fiber lasers and amplifiers application—design and fabrication[J]. Photonics, 2018, 5(4): 38.

万志强, 杨瑷碧, 杨光华, 于珊, 胡紫晔, 唐吉龙, 魏志鹏. 高功率大芯径环形光斑可调信号合束器的研究[J]. 中国激光, 2024, 51(8): 0801004. Zhiqiang Wan, Aibi Yang, Guanghua Yang, Shan Yu, Ziye Hu, Jilong Tang, Zhipeng Wei. Ring Light Spot Adjustable Signal Combiner with High Power and Large Core Diameter[J]. Chinese Journal of Lasers, 2024, 51(8): 0801004.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!