量子光学学报, 2022, 28 (2): 158, 网络出版: 2022-10-14   

基于石墨烯表面等离激元的混合型纳米并行线波导的模式分析

Mode Analysis of Hybrid Nanoparallel Wire Waveguides Based on Graphene Surface Plasmons
作者单位
1 山西大学, 物理电子工程学院 山西 太原 030006
2 山西大学激光光谱研究所, 量子光学与光量子器件国家重点实验室 山西 太原 030006
3 山西大学, 极端光学协同创新中心 山西 太原 030006
摘要
设计了一种由涂覆石墨烯的两根椭圆柱形和一根圆柱形电介质纳米线构成的基于石墨烯表面等离激元的纳米并行线波导。利用有限元方法, 对波导所支持的5个最低阶模式的传输特性进行了分析。结果表明, 波导所支持的这些模式均可由涂覆石墨烯的椭圆柱形和圆柱形电介质纳米线的基模和一阶模合成。工作波长或者石墨烯的费米能变化时, 这些模式的传输特性的变化趋势保持一致。模式1和模式2的传输特性受椭圆柱纳米线半长轴、中心间距和圆柱纳米线的高度的影响相对较大。模式3的传输特性受结构参数的影响相对较小。模式4和模式5的传输特性受椭圆柱纳米线半长轴、中心间距和圆柱纳米线的半径的影响相对较大。本文设计的波导采用了椭圆柱形结构, 增加了可调节的参数, 其传输性能优于由涂覆石墨烯的三根圆柱形电介质纳米线构成的波导。本文设计的波导在微纳光学器件集成和传感器领域具有一定的应用前景。
Abstract
A graphene surface plasmon-based nano-parallel wire waveguide composed of two elliptical cylindrical and one cylindrical dielectric nanowires coated with graphene is designed. Using the finite element method, thetransmission characteristics of the five lowest-order modes supported by the waveguide are analyzed. The results show that these modes supported by the waveguide can be synthesized from the fundamental mode and the first-order mode of the graphene-coatedelliptical cylindrical and cylindrical dielectric nanowires. When the working wavelength or the Fermi energy of graphene changes, the changing trend of the transmission characteristics of these modes remains the same. The transmission characteristics of mode 1 and mode 2 are relatively greatly affected by the semi-major axis of the elliptical cylindrical nanowire, the center distance, and the height of the cylindrical nanowire. The transmission characteristics of Mode 3 are relatively less affected by structural parameters. The transmission characteristics of mode 4 and mode 5 are relatively greatly affected by the semi-major axis of the elliptical cylindrical nanowire, the center distance, and the radius of the cylindrical nanowire. The waveguide designed in this paper adopts an elliptical cylindrical structure and increases adjustable parameters. Its transmission performance is better than that of a waveguide composed of three cylindrical dielectric nanowires coated with graphene. The waveguide designed in this paper has certain application prospects in the field of micro-nano optical device integration and sensors.
参考文献

[1] BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830. DOI: 10.1038/nature01937.

[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2003, 438(7065): 197-200. DOI: 10.1038/nature04233.

[3] CHRISTENSEN J, MANJAVACAS A, THONGRATTANASIRI S, et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons[J]. ACS Nano, 2012, 6(1): 431-440. DOI: 10.1021/nn2037626.

[4] JU L, GENG B S, HORNG J, et al. Graphene plasmonics for tunable terahertz,metamaterials[J]. Nature Nanotechnology, 2011, 6(10): 630-634. DOI: 10.1038/NNANO.2011.146.

[5] JABLAN M, BULJAN H, SOLJAI H. Plasmonics in graphene at infrared frequencies[J]. Phys Rev B, 2009, 80(24): 245435.

[6] LIU P H, ZHANG X Z, MA Z H, et al. Surface plasmon modes in graphene wedge and groove waveguides[J]. Opt Express, 2013, 21(26): 32432-32440. DOI: 10.1364/OE.21.032432.

[7] GAO Y X, REN G B, ZHU B F, et al. Single-mode graphene-coated naplasmonic waveguide[J]. Opt Lett, 2014, 39(20): 5909-5912. DOI: 10.1364/OL.39.005909.

[8] GAO Y X, REN G B, ZHU B F, et al. Analytical model for plasmon modes in graphene-coated nanowire[J]. Opt Express, 2014, 22(20): 24322-24331. DOI: 10.1364/OE.22.024322.

[9] 程鑫, 薛文瑞, 卫壮志,等. 涂覆石墨烯的椭圆形电介质纳米线光波导的模式特性分析[J]. 物理学报, 2019, 68(05): 058101. DOI: 10.7498/aps.68.20182090.

[10] HUANG Y X, ZHANG L, YIN H, et al. Graphene-coated nanowires with a drop-shaped cross section for 10 nm confinement and 1 mm propagation[J]. Opt Lett, 2017, 42(11): 2078-2081. DOI: 10.1364/OL.42.002078.

[11] CONG X, HUANG Y X, ZHANG M, et al. Graphene-coated nanowires with drop-shaped cross section for the low loss propagation of THz waves with sub-micron mode widths[J]. Laser Phys Lett, 2018, 15(9): 096001.

[12] YANG J F, YANG J J, DENG W, et al. Transmission properties and molecular sensing application of CGPW[J]. Opt Express, 2015, 23(25): 32289-32299. DOI: 10.1364/OE.23.032289

[13] LIU J P, ZHAI X, WANG L L, et al. Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide[J]. Plasmonics, 2015, 11(3): 703-711. DOI: 10.1007/s11468-015-0095-z.

[14] LIU J P, ZHAI X, XIE F, et al. Analytical model of mid-infrared surface plasmon modes in a cylindrical long-range waveguide with double-layer graphene[J]. J Lightwave Technology, 2017, 35(10): 1971-1979. DOI: 10.1109/JLT.2016.2645239.

[15] XING R, JIAN S S. Numerical analysis on tunable multilayer nanoring waveguide[J]. IEEE Photo Techno Lett, 2017, 29(12): 967-970. DOI: 10.1109/LPT.2017.2700539.

[16] CHENG X, XUE W R, WEI Z Z, et al. Mode analysis of a confocal elliptical dielectric nanowire coated with double-layer grapheme[J]. Opt Communications, 2019, 452: 467-475. DOI: 10.1016/j.optcom.2019.07.067.

[17] XING R, JIAN S S. The graphene square waveguide with small normalized mode area[J]. IEEE Photo Techno Lett, 2017, 29(19): 1643-1646. DOI: 10.1109/LPT.2017.2743014.

[18] ZHU B F, REN G B, YANG Y, et al. Field enhancement and gradient force in the graphene-coated nanowire pairs[J]. Plasmonics, 2014, 10(4): 839-845. DOI: 10.1007/s11468-014-9871-4.

[19] YE S, WANG Z X, SUN C R, et al. Plasmon-phonon-polariton modes and field enhancement in the graphene-coated hexagon boron nitride nanowire pairs[J]. Opt Express, 2018, 26(18): 23854-23867. DOI: 10.1364/OE.26.023854.

[20] 彭艳玲,薛文瑞,卫壮志, 等. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析[J], 物理学报, 2018, 67(3): 038102. DOI: 10.7498/aps.67.20172016.

[21] 董慧莹, 秦晓茹, 薛文瑞, 等. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析[J]. 物理学报, 2020, 69(23): 238102. DOI: 10.7498/aps.69.20201041.

[22] WU D, TIAN J P. Study on the plasmonic characteristics of bow-tie type graphene-coated nanowire pair[J]. Optik, 156: 689-695. DOI: 10.1016/j.ijleo.2017.12.003.

[23] XING R, JIAN S S. Numerical analysis on the multilayer nanoring waveguide pair[J]. IEEE Photo Techno Lett, 2016, 28(24): 2779-2782. DOI: 10.1109/LPT.2016.2623274.

[24] WANG X, WANG J, MA T, et al. Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition[J]. Chinese Physics B, 2021, 30(1):014207. DOI: 10.1088/1674-1056/abb65c.

[25] TENG D, WANG Y, XU T, et al. Symmetric Graphene Dielectric Nanowaveguides as Ultra-Compact Photonic Structures[J]. Nanomaterials, 2021, 11(5): 1281. DOI: 10.3390/nano11051281.

[26] 卫壮志, 薛文瑞, 彭艳玲, 等. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析[J]. 物理学报, 2018, 67(10):108101. DOI: 10.7498/aps.67.20180036.

[27] NIKITIN A Y, GUINEA F, GARCIA-VIDAL F J, et al. Fields radiated by a nanoemitter in a graphene sheet [J]. Phys Rev B, 2011, 84(19): 195446. DOI: 10.1103/PhysRevB.84.195446.

[28] CHEN B, MENG C, YANG Z, et al. Graphene coated ZnO nanowire optical waveguides[J]. Optics Express, 2014, 22(20): 24276-24285. DOI: 10.1364/OE.22.024276.

[29] CHEN K, ZHOU X, CHENG X, et al. Graphene photonic crystal fibre with strong and tunable light-matter interaction[J]. Nature Photonics, 2019, 13(11): 754-759. DOI: 10.1038/s41566-019-0492-5.

[30] HE X, NING T, LU S, et al. Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement[J]. Opt Express, 2018, 26(8): 10109-10118. DOI: 10.1364/OE.26.010109.

[31] HAJATI M, HAJATI Y. Deep subwavelength confinement of mid-infrared plasmon modes by coupling graphene-coated nanowire with a dielectric substrate[J]. Plasmonics, 2018, 13(2): 403-412. DOI:10.1007/s11468-017-0524-2.

[32] TENG D, WANG K, HUAN Q, et al. High-performance light transmission based on graphene plasmonic waveguides[J]. Journal of Materials Chemistry C, 2020, 8(20): 6832-6838. DOI:10.1039/d0tc01125h.

[33] VAKIL A, ENGHETA N. Transformation Optics Using Graphene[J]. Science, 2011, 332(6035): 1291-1294.

李宁, 薛文瑞, 董慧莹, 李慧慧, 李昌勇. 基于石墨烯表面等离激元的混合型纳米并行线波导的模式分析[J]. 量子光学学报, 2022, 28(2): 158. LI Ning, XUE Wen-rui1, DONG Hui-ying, LI Hui-hui, LI Chang-yong. Mode Analysis of Hybrid Nanoparallel Wire Waveguides Based on Graphene Surface Plasmons[J]. Acta Sinica Quantum Optica, 2022, 28(2): 158.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!