量子光学学报, 2023, 29 (1): 010001, 网络出版: 2023-11-17  

腔光力学研究进展

Advances in Cavity Optomechanics
作者单位
1 广东轻工职业技术学院, 信息技术学院 广东 广州 510300
2 华南师范大学, 广东省微纳光子功能材料与器件重点实验室 信息光电子科技学院 广东 广州 510006
3 华南师范大学 广东省量子调控工程与材料重点实验室 广东 广州 510006
4 广东理工学院, 大学物理实验中心 广东 肇庆 526100
摘要
腔光力学研究光子与宏观机械振子的相互作用, 目前已成为研究量子世界与经典世界之间的过渡以及研究非经典和非线性效应的重要领域。本文首先介绍该领域中的基本物理概念, 包括辐射压力、光机械哈密顿量、海森堡-朗之万方程、方程的线性化等。然后综述近年来一些新奇光力学效应的发现和研究进展, 包括光力诱导透明、非互易光传播、高阶边带产生、光机械纠缠等。最后提出了一些研究展望。
Abstract
Cavity optomechanics studies the interaction between photons and macroscopic mechanical oscillators. Now it has become an important field for the study of the transition between the quantum world and the classicalworld, as well as the non-classical and nonlinear effects. This paper first introduces some basic physical concepts in this field, including radiation pressure, optomechanical Hamiltonian, Heisenberg-Langevin equation, and linearization of equations. Then we review some progress of the novel optomechanical effects in recent years, including optomechanically induced transparency, nonreciprocal light propagation, high-order sideband generation, and optomechanical entanglement. Finally, some research prospects are proposed.
参考文献

[1] LEBEDEW P. Untersuchungen über die Druckkrfte des Lichtes[J]. Annalen der Physik, 1901, 311(11):433-458. DOI: 10.1002/andp.19013111102.

[2] KIPPENBERG T J, VAHALA K J. Cavity Optomechanics[J]. Optics Express, 2007, 15(25):17172-17205. DOI: 10.1364/OE.15.017172.

[3] ASPELMEYER M, MEYSTRE P, SCHWAB K. Quantum Optomechanics[J]. Physics Today, 2012, 65(7):29-35. DOI: 10.1063/PT.3.1640.

[4] MEYSTRE P. A Short Walk Through Quantum Optomechanics[J]. Annalen der Physik, 2013, 525(3):215-233. DOI: 10.1002/andp.201200226.

[5] ASPELMEYER M, KIPPENBERG T J, MARQUARDT F. Cavity Optomechanics[J]. Reviews of Modern Physics, 2014, 86(4):1391. DOI: 10.1103/RevModPhys.86.1391.

[6] XIONG H, SI L G, LV X Y, et al. Review of Cavity Optomechanics in the Weak-coupling Regime: from Linearization to Intrinsic Nonlinear Interactions[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(5):1-13. DOI: 10.1007/s11433-015-5648-9.

[7] BRAGINSKY V B, KHALILI F Y. Quantum Nondemolition Measurements: the Route from Toys to Tools[J]. Reviews of Modern Physics, 1996, 68(1):1. DOI: 10.1103/RevModPhys.68.1.

[8] DORSEL A, MCCULLEN J D, MEYSTRE P, et al. Optical Bistability and Mmirror Confinement Induced by Radiation Pressure[J]. Physical Review Letters, 1983, 51(17):1550. DOI: 10.1103/Phys RevLett.51.1550.

[9] CUTHBERTSON B D, TOBAR M E, IVANOV E N, et al. Parametric Back‐action Effects in a High‐Q Cyrogenic Sapphire Transducer[J]. Review of Scientific Instruments, 1996, 67(7):2435-2442. DOI: 10.1063/1.1147193.

[10] ASHKIN A. Trapping of Atoms by Resonance Radiation Pressure[J]. Physical Review Letters, 1978, 40(12):729. DOI: 10.1103/PhysRevLett.40.729.

[11] HNSCH T W, SCHAWLOW A L. Cooling of Gases by Laser Radiation[J]. Optics Communications, 1975, 13(1):68-69. DOI: 10.1016/0030-4018(75)90159-5.

[12] WINELAND D J, ITANO W M. Laser Cooling of Atoms[J]. Physical Review A, 1979, 20(4):1521. DOI: 10.1103/PhysRevA.20.1521.

[13] PHILLIPS W D. Nobel Lecture: Laser Cooling and Trapping of Neutral Atoms[J]. Reviews of Modern Physics, 1998, 70(3):721. DOI: 10.1103/RevModPhys.70.721.

[14] FABRE C, PINARD M, BOURZEIX S, et al. Quantum-noise Reduction Using a Cavity with a Movable Mirror[J]. Physical Review A, 1994, 49(2):1337. DOI: 10.1103/PhysRevA.49.1337.

[15] MANCINI S, TOMBESI P. Quantum Noise Reduction by Radiation Pressure[J]. Physical Review A, 1994, 49(5):4055. DOI: 10.1103/PhysRevA.49.4055.

[16] BOSE S, JACOBS K, KNIGHT P L. Preparation of Nonclassical States in Cavities with a Moving Mirror[J]. Physical Review A, 1997, 56(5):4175. DOI: 10.1103/PhysRevA.56.4175.

[17] MANCINI S, MAN’KO V I, TOMBESI P. Ponderomotive Control of Quantum Macroscopic Coherence[J]. Physical Review A, 1997, 55(4):3042. DOI: 10.1103/PhysRevA.55.3042.

[18] MANCINI S, VITALI D, TOMBESI P. Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback[J]. Physical Review Letters, 1998, 80(4):688. DOI: 10.1103/PhysRevLett.80.688.

[19] COHADON P F, HEIDMANN A, PINARD M. Cooling of a Mirror by Radiation Pressure[J]. Physical Review Letters, 1999, 83(16):3174. DOI: 10.1103/PhysRevLett.83.3174.

[20] BUONANNO A, CHEN Y. Scaling Law in Signal Recycled Laser-interferometer Gravitational-wave Detectors[J]. Physical Review D, 2003, 67(6):062002. DOI: 10.1103/PhysRevD.67.062002.

[21] MIAO H, MA Y, ZHAO C, et al. Enhancing the Bandwidth of Gravitational-wave Detectors with Unstable Optomechanical Filters[J]. Physical Review Letters, 2015, 115(21):211104. DOI: 10.1103/PhysRevLett.115.211104.

[22] VERLOT P, TAVERNARAKIS A, BRIANT T, et al. Backaction Amplification and Quantum Limits in Optomechanical Measurements[J]. Physical Review Letters, 2010, 104(13):133602. DOI: 10.1103/PhysRevLett.104.133602.

[23] BRAWLEY G A, VANNER M R, LARSEN P E, et al. Nonlinear Optomechanical Measurement of Mechanical Motion[J]. Nature Communications, 2016, 7(1):1-7. DOI: 10.1038/ncomms10988.

[24] NEVEU P, CLARKE J, VANNER M R, et al. Preparation and Verification of Two-mode Mechanical Entanglement through Pulsed Optomechanical Measurements[J]. New Journal of Physics, 2021, 23(2):023026. DOI: 10.1088/1367-2630/abe1e4.

[25] STANNIGEL K, RABL P, SRENSEN A S, et al. Optomechanical Transducers for Long-distance Quantum Communication[J]. Physical Review Letters, 2010, 105(22):220501. DOI: 10.1103/PhysRevLett.105.220501.

[26] TSUKANOV A V. Optomechanical Systems and Quantum Computing[J]. Russian Microelectronics, 2011, 40(5):333-342. DOI: 10.1134/S106373971105009X.

[27] MARINKOVIC I, WALLUCKS A, RIEDINGER R, et al. Optomechanical Bell Test[J]. Physical Review Letters, 2018, 121(22):220404. DOI: 10.1103/PhysRevLett.121.220404.

[28] FIASCHI N, HENSEN B, WALLUCKS A, et al. Optomechanical Quantum Teleportation[J]. Nature Photonics, 2021, 15(11):817-821. DOI: 10.1038/s41566-021-00866-z.

[29] LEMONDE M A, DIDIER N, CLERK A A. Enhanced Nonlinear Interactions in Quantum Optomechanics via Mechanical Amplification[J]. Nature Communications, 2016, 7(1):1-8. DOI: 10.1038/ncomms11338.

[30] YIN T S, L X Y, ZHENG L L, et al. Nonlinear Effects in Modulated Quantum Optomechanics[J]. Physical Review A, 2017, 95(5):053861. DOI: 10.1103/PhysRevA.95.053861.

[31] LOMBARDI A, SCHMIDT M K, Weller L, et al. Pulsed Molecular Optomechanics in Plasmonic Nanocavities: from Nonlinear Vibrational Instabilities to Bond-breaking[J]. Physical Review X, 2018, 8(1):011016. DOI: 10.1103/PhysRevX.8.011016.

[32] PARASO T K, KALAEE M, ZANG L, et al. Position-squared Coupling in a Tunable Photonic Crystal Optomechanical Cavity[J]. Physical Review X, 2015, 5(4):041024. DOI: 10.1103/PhysRevX.5.041024.

[33] YU W, JIANG W C, LIN Q, et al. Cavity Optomechanical Spring Sensing of Single Molecules[J]. Nature Communications, 2016, 7(1):1-9. DOI: 10.1038/ncomms12311.

[34] BEKKER C, KALRA R, BAKER C, et al. Injection Locking of an Electro-optomechanical Device[J]. Optica, 2017, 4(10):1196-1204. DOI: 10.1364/OPTICA.4.001196.

[35] GRTNER C, MOURA J P, HAAXMAN W, et al. Integrated Optomechanical Arrays of Two High Reflectivity SiN Membranes[J]. Nano Letters, 2018, 18(11):7171-7175. DOI: 10.1021/acs.nanolett.8b03240.s001.

[36] DE LEPINAY L M, DAMSKGG E, OCKELOEN-KORPPI C F, et al. Realization of Directional Amplification in a Microwave Optomechanical Device[J]. Physical Review Applied, 2019, 11(3):034027. DOI: 10.1103/PhysRevApplied.11.034027.

[37] BROOKS D W C, BOTTER T, SCHREPPLER S, et al. Non-classical Light Generated by Quantum-noise-driven Cavity Optomechanics[J]. Nature, 2012, 488(7412):476-480. DOI: 10.1038/nature11325.

[38] XIONG H, WU Y. Fundamentals and Applications of Optomechanically Induced Transparency[J]. Applied Physics Reviews, 2018, 5(3):031305. DOI: 10. 1063/1. 5027122.

[39] MANIPATRUNI S, ROBINSON J T, LIPSON M. Optical Nonreciprocity in Optomechanical Structures[J]. Physical Review Letters, 2009, 102(21):213903. DOI: 10.1103/PhysRevLett.102.213903.

[40] XIONG H, SI L G, L X Y, et al. Carrier-envelope Phase-dependent Effect of High-order Sideband Generation in Ultrafast Driven Optomechanical System[J]. Optics Letters, 2013, 38(3):353-355. DOI: 10.1364/ol.38.000353.

[41] VITALI D, GIGAN S, FERREIRA A, et al. Optomechanical Entanglement Between a Movable Mirror and a Cavity Field[J]. Physical Review Letters, 2007, 98(3):030405. DOI: 10.1103/PhysRevLett.98.030405.

[42] HE Q Y, REID M D. Einstein-Podolsky-Rosen Paradox and Quantum Steering in Pulsed Optomechanics[J]. Physical Review A, 2013, 88(5):052121. DOI: 10.1103/PhysRevA.88.052121.

[43] LIU Y C, HU Y W, WONG C W, et al. Review of Cavity Optomechanical Cooling[J]. Chinese Physics B, 2013, 22(11):114213. DOI: 10.1088/1674-1056/22/11/114213.

[44] NATION P D. Nonclassical Mechanical States in an Optomechanical Micromaser Analog[J]. Physical Review A, 2013, 88(5):053828. DOI: 10. 1103/PhysRevA. 88. 053828.

[45] LAW C K. Interaction Between a Moving Mirror and Radiation Pressure: A Hamiltonian Formulation[J]. Physical Review A, 1995, 51(3):2537. DOI: 10.1103/PhysRevA.51.2537.

[46] WEIS S, RIVIRE R, DELGLISE S, et al. Optomechanically Induced Transparency[J]. Science, 2010, 330(6010):1520-1523. DOI: 10.1126/science.1195596.

[47] AGARWAL G S, HUANG S. Electromagnetically Induced Transparency in Mechanical Effects of Light[J]. Physical Review A, 2010, 81(4):041803. DOI: 10.1103/PhysRevA.81.041803.

[48] ZHANG J Q, LI Y, FENG M, et al. Precision Measurement of Electrical Charge with Optomechanically Induced Transparency[J]. Physical Review A, 2012, 86(5): 053806. DOI: 10.1103/PhysRevA.86.053806.

[49] KRONWALD A, MARQUARDT F. Optomechanically Induced Transparency in the Nonlinear Quantum Regime[J]. Physical Review Letters, 2013, 111(13):133601. DOI: 10.1103/PhysRevLett.111.133601.

[50] MA P C, ZHANG J Q, XIAO Y, et al. Tunable Double Optomechanically Induced Transparency in an Optomechanical System[J]. Physical Review A, 2014, 90(4):043825. DOI: 10.1103/PhysRevA.90.043825

[51] LI W, JIANG Y, LI C, et al. Parity-time-symmetry Enhanced Optomechanically-induced-transparency[J]. Scientific Reports, 2016, 6(1):1-11.

[52] WANG Q, ZHANG J Q, MA P C, et al. Precision Measurement of the Environmental Temperature by Tunable Double Optomechanically Induced Transparency with a Squeezed Field[J]. Physical Review A, 2015, 91(6):063827.

[53] WU Q, ZHANG J Q, WU J H, et al. Tunable Multi-channel Inverse Optomechanically Induced Transparency and its Applications[J]. Optics Express, 2015, 23(14):18534-18547.

[54] SI L G, XIONG H, ZUBAIRY M S, et al. Optomechanically Induced Opacity and Amplification in a Quadratically Coupled Optomechanical System[J]. Physical Review A, 2017, 95(3):033803. DOI: 10.1103/PhysRevA.95.033803.

[55] L H, WANG C, YANG L, et al. Optomechanically Induced Transparency at Exceptional Points[J]. Physical Review Applied, 2018, 10(1):014006. DOI: 10. 1103/PhysRevApplied.10.014006.

[56] LAI D G, WANG X, QIN W, et al. Tunable Optomechanically Induced Transparency by Controlling the Dark-mode Effect[J]. Physical Review A, 2020, 102(2):023707. DOI: 10.1103/PhysRevA.102.023707.

[57] ZANGENEH-NEJAD F, FLEURY R. Topological Optomechanically Induced Transparency[J]. Optics Letters, 2020, 45(21):5966-5969. DOI: 10.1364/OL.410002.

[58] HAO X Z, ZHANG X Y, ZHOU Y H, et al. Topologically Protected Optomechanically Induced Transparency in a One-dimensional Optomechanical Array[J]. Physical Review A, 2022, 105(1):013505. DOI: 10.1103/PhysRevA.105. 013505.

[59] HAFEZI M, RABL P. Optomechanically Induced Non-reciprocity in Microring Resonators[J]. Optics Express, 2012, 20(7):7672-7684. DOI: 10.1364/OE.20.007672.

[60] SHEN Z, ZHANG Y L, CHEN Y, et al. Experimental Realization of Optomechanically Induced Non-reciprocity[J]. Nature Photonics, 2016, 10(10):657-661. DOI: 10.1038/nphoton.2016.161.

[61] XU X W, LI Y. Optical Nonreciprocity and Optomechanical Circulator in Three-mode Optomechanical Systems[J]. Physical Review A, 2015, 91(5):053854. DOI: 10.1103/PhysRevA.91.053854.

[62] RUESINK F, MIRI M A, ALU A, et al. Nonreciprocity and Magnetic-free Isolation based on Optomechanical Interactions[J]. Nature Communications, 2016, 7(1):1-8. DOI: 10.1038/ncomms13662.

[63] LI G, XIAO X, LI Y, et al. Tunable Optical Nonreciprocity and a Phonon-photon Router in an Optomechanical System with Coupled Mechanical and Optical Modes[J]. Physical Review A, 2018, 97(2):023801. DOI: 10.1103/PhysRevA.97.023801.

[64] YAN X B, LU H L, GAO F, et al. Perfect Optical Nonreciprocity in a Double-cavity Optomechanical System[J]. Frontiers of Physics, 2019, 14(5):1-6. DOI: 10.1007/s11467-019-0922-3.

[65] LIU J H, YU Y F, ZHANG Z M. Nonreciprocal Transmission and Fast-slow Light Effects in a Cavity Optomechanical System[J]. Optics Express, 2019, 27(11):15382-15390. DOI: 10.1364/OE.27.015382.

[66] DE LEPINAY L M, OCKELOEN-KORPPI C F, MALZ D, et al. Nonreciprocal Transport based on Cavity Floquet Modes in Optomechanics[J]. Physical Review Letters, 2020, 125(2):023603. DOI: 10.1103/PhysRevLett.125.023603.

[67] QIAN Y B, LAI D G, CHEN M R, et al. Nonreciprocal Photon Transmission with Quantum Noise Reduction via Cross-Kerr Nonlinearity[J]. Physical Review A, 2021, 104(3):033705. DOI: 10.1103/PhysRevA.104.033705.

[68] LAN Y T, SU W J, WU H, et al. Nonreciprocal Light Transmission via Optomechanical Parametric Interactions[J]. Optics Letters, 2022, 47(5):1182-1185. DOI: 10.1364/OL.446367.

[69] KONG C, XIONG H, WU Y. Coulomb-interaction-dependent Effect of High-order Sideband Generation in an Optomechanical System[J]. Physical Review A, 2017, 95(3):033820. DOI: 10.1103/PhysRevA.95.033820.

[70] LIU Z X, XIONG H, WU Y. Generation and Amplification of a High-order Sideband Induced by Two-level Atoms in a Hybrid Optomechanical System[J]. Physical Review A, 2018, 97(1):013801. DOI: 10.1103/PhysRevA.97.013801.

[71] YAO J, YU Y, ZHANG Z. Effects of Casimir Force on High-order Sideband Generation in an Optomechanical System[J]. Chinese Optics Letters, 2018, 16(11):111201. DOI: 10.3788/col201816.111201.

[72] HE L Y. Parity-time-symmetry-enhanced Sideband Generation in an Optomechanical System[J]. Physical Review A, 2019, 99(3):033843. DOI: 10.1103/PhysRevA.99.033843.

[73] LIU J H, HE G, WU Q, et al. Fraction-order Sideband Generation in an Optomechanical System[J]. Optics Letters, 2020, 45(18):5169-5172. DOI: 10.1364/OL.399584.

[74] LIU J H, YU Y F, WU Q, et al. Tunable High-order Sideband Generation in a Coupled Double-Cavity Optomechanical System[J]. Optics Express, 2021, 29(8):12266-12277. DOI: 10.1364/OE.418033.

[75] PATERNOSTRO M, VITALI D, GIGAN S, et al. Creating and Probing Multipartite Macroscopic Entanglement with Light[J]. Physical Review Letters, 2007, 99(25):250401. DOI: 10.1103/PhysRevLett.99.250401.

[76] GENES C, RITSCH H, DREWSEN M, et al. Atom-membrane Cooling and Entanglement Using Cavity Electromagnetically Induced Transparency[J]. Physical Review A, 2011, 84(5):051801. DOI: 10.1103/PhysRevA.84.051801.

[77] BARZANJEH S, VITALI D, TOMBESI P, et al. Entangling Optical and Microwave Cavity Modes by means of a Nanomechanical Resonator[J]. Physical Review A, 2011, 84(4):042342. DOI: 10.1103/PhysRevA.84.042342.

[78] BRKJE K, NUNNENKAMP A, GIRVIN S M. Proposal for Entangling Remote Micromechanical Oscillators via Optical Measurements[J]. Physical Review Letters, 2011, 107(12):123601. DOI: 10.1103/PhysRevLett.107.123601.

[79] PALOMAKI T A, TEUFEL J D, SIMMONDS R W, et al. Entangling Mechanical Motion with Microwave Fields[J]. Science, 2013, 342(6159):710-713. DOI: 10.1126/science.1244563.

[80] XIANG Y, SUN F X, WANG M, et al. Detection of Genuine Tripartite Entanglement and Steering in Hybrid Optomechanics[J]. Optics Express, 2015, 23(23):30104-30117. DOI: 10.1364/OE.23.030104.

[81] YANG X, LING Y, SHAO X, et al. Generation of Robust Tripartite Entanglement with a Single-Cavity Optomechanical System[J]. Physical Review A, 2017, 95(5):052303. DOI: 10.1103/PhysRevA.95.052303.

[82] HUANG S, CHEN A. Quadrature-squeezed Light and Optomechanical Entanglement in a Dissipative Optomechanical System with a Mechanical Parametric Drive[J]. Physical Review A, 2018, 98(6):063843. DOI: 10.1103/PhysRevA.98.063843.

[83] DIXON K Y, COHEN L, BHUSAL N, et al. Optomechanical Entanglement at Room Temperature: A Simulation Study with Realistic Conditions[J]. Physical Review A, 2020, 102(6):063518. DOI: 10.1103/PhysRevA.102.063518.

[84] LAI D G, QIN W, HOU B P, et al. Significant Enhancement in Refrigeration and Entanglement in Auxiliary-cavity-assisted Optomechanical Systems[J]. Physical Review A, 2021, 104(4):043521. DOI: 10.1103/PhysRevA.104.043521.

[85] LIU Y Y, ZHANG Z M, LIU J H, et al. Nonreciprocal Coupling Induced Entanglement Enhancement in a Double-cavity Optomechanical System[J]. Chinese Physics B, 2022, 31(9):094203.

刘军浩, 於亚飞, 王金东, 张智明. 腔光力学研究进展[J]. 量子光学学报, 2023, 29(1): 010001. LIU Jun-hao, YU Ya-fei, WANG Jin-dong, ZHANG Zhi-ming. Advances in Cavity Optomechanics[J]. Acta Sinica Quantum Optica, 2023, 29(1): 010001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!