光学技术, 2023, 49 (1): 105, 网络出版: 2023-03-19  

基于多层感知机和多尺度特征提取的肝脏分割网络

Liver segmentation network based on multilayer perceptron and multi-scale feature extraction
作者单位
上海理工大学 健康科学与工程学院, 上海 200093
摘要
肝脏精准分割对于肝癌的定位与治疗至关重要, 针对肝脏形状尺寸不一以及边缘和病灶区域分割难度较大等问题, 提出了一个基于多层感知机和多尺度特征提取的肝脏分割网络(M2U-Net)。该网络分为卷积阶段和多层感知机阶段。在卷积阶段的编码器部分加入挤压激励模块, 突出特定的肝脏分割任务, 抑制无关背景区域; 在多层感知机阶段加入标记化多层感知机模块, 减小模型复杂度。过渡层增加了多尺度特征提取模块, 适应不同尺度肝脏的分割以及细节区域的分割; 在LiTS数据集和东方肝胆医院提供的数据集上的实验结果表明, 此分割网络在三个评价指标上结果均优于U-Net、U-Net++和CE-Net等分割网络。
Abstract
Precise liver segmentation is crucial for the localization and treatment of liver cancer, and in view of the problems of different liver shapes and sizes, as well as the difficulty of segmentation of edges and lesion areas, a liver segmentation network based on multilayer sensor and multi-scale feature extraction (M2U-Net) is proposed. The network is divided into convolutional phases and multilayer perceptron phases. First, an extrusion excitation module is added to the encoder portion of the convolution phase to highlight specific liver segmentation tasks and inhibit irrelevant background areas. Secondly, a tokenized multilayer perceptron module is added to the multilayer perceptron stage to reduce the complexity of the model. The transition layer adds a multi-scale feature extraction module to adapt to the segmentation of livers at different scales and the segmentation of detail areas. Finally, experimental results on the LiTS dataset and the dataset provided by Oriental Hepatobiliary Hospital show that the segmentation network is better than the segmentation networks such as U-Net, U-Net++ and CE-Net on three evaluation indicators.
参考文献

[1] 林鹏, 蔡敏清, 房俊伟, 等. 肝癌术后复发的外科治疗研究现状及进展[J]. 器官移植,2022,13(1):111-119.

[2] 赵于前, 闫桂霞, 徐效文, 等. 基于先验信息水平集方法的肝脏 CT 序列图像自动分割[J]. 中南大学学报(自然科学版),2015,46(4):1310-1317.

[3] 吴健, 崔志明, 叶峰, 等. 基于轮廓形状的 CT 断层图像插值[J]. 计算机应用与软件,2008,25(11):63-65.

[4] Lu XQ, Wu JS, Ren XY, et al. The study and application of the improved region growing algorithm for liver segmentation[J]. Optik,2014,125(9):2142-2147.

[5] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]∥International Conference on Medical Image Computing and Computer-assisted Intervention,Munich,Germany:Springer,Cham,2015:234-241.

[6] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,NV,USA:IEEE,2016:770-778.

[7] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]∥Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,HI,USA:IEEE,2017:4700-4708.

[8] Wang J, Lv P, Wang H, et al. SAR-U-Net: Squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in computed tomography[J]. Computer Methods and Programs in Biomedicine,2021,208:106268.

[9] Gu Z, Cheng J, Fu H, et al. CE-Net: Context encoder network for 2d medical image segmentation[J]. IEEE Transactions on Medical Imaging,2019,38(10):2281-2292.

[10] Chen J, Lu Y, Yu Q, et al. Transunet:Transformers make strong encoders for medical image segmentation[EB/OL].(2021-02-08)/ [2022-11-22].https:∥doi.org/10.48550/arXiv.2102.04306.

[11] Valanarasu J, Oza P, Hacihaliloglu I, et al. Medical transformer: Gated axial-attention for medical image segmentation[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2021:36-46.

[12] Cao H, Wang Y, Chen J, et al. Swin-unet: Unet-like pure transformer for medical image segmentation[EB/OL]. (2021-05-12)/[2022-11-22].https:∥doi.org/10.48550/arXiv.2105.05537.

[13] Xu G P, Wu X R, Zhang X, et al. LeViT-UNet: make faster encoders with transformer for medical image segmentation[EB/OL]. (2021-07-19)/ [2022-11-22].https:∥arxiv.org/abs/2107.08623.2021.

[14] Bilic P, Christ P, Li H B, et al. The liver tumor segmentation benchmark (lits)[J/OL]. Medical Image Analysis. (2022-11-17)/ [2022-11-22].https:∥arxiv.org/abs/1901.04056.2019.

[15] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.

[16] Nasser A, Amr A, ElHabshy A A, et al. Efficient 3D deep learning model for medical image semantic segmentation[J]. Alexandria Engineering Journal,2021,60(1):1231-1239.

[17] Devlin J, Chang M W, Lee K, et al. Bert:Pre-training of deep bidirec-tional transformers for language understanding[EB/OL].(2019-05-24)/[2022-11-22].https:∥doi.org/10.48550/arXiv.1810.04805.

[18] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. (2021-06-13)/ [2022-11-22].https:∥doi.org/10.48550/arXiv.2010.11929.

[19] Valanarasu, J M J, Patel V M. UNeXt: MLP-based rapid medical image segmentation network[EB/OL]. (2022-03-09)/ [2022-11-22].https:∥doi.org/10.48550/arXiv.2203.04967.

[20] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL].(2017-12-05)/[2022-11-22].https:∥doi.org/10.48550/arXiv.1706.05587.

[21] Liu Y C, Shahid M, Sarapugdi W, et al. Cascaded atrous dual attention U-Net for tumor segmentation[J]. Multimedia Tools and Applications,2021,80(20):30007-30031.

[22] Fan T, Wang G, Wang X, et al. MSN-Net: A multi-scale context nested U-Net for liver segmentation[J]. Signal, Image and Video Processing,2021,15(6):1089-1097.

[23] Khan R A, Luo Y, Wu F X. RMS-UNet: Residual multi-scale UNet for liver and lesion segmentation[J]. Artificial Intelligence in Medicine,2022,124:102231.

[24] Mourya G K, Gogoi M, Talbar S N, et al. Cascaded dilated deep residual network for volumetric liver segmentation from CT image[J]. Nternational Journal of E-Health and Medical Communications,2021,12(1):34-45.

[25] 于群, 张建新, 魏小鹏, 等. 基于级联可分离空洞残差U-Net的肝脏肿瘤分割[J]. 应用科学学报,2021,39(3):378-386.

[26] 刘蕊, 续欣莹, 谢珺. 基于多维度特征提取网络的肝脏图像分割[J]. 河北大学学报(自然科学版),2021,41(4):426-435.

胡瑶, 李进, 王远军. 基于多层感知机和多尺度特征提取的肝脏分割网络[J]. 光学技术, 2023, 49(1): 105. HU Yao, LI Jin, WANG Yuanjun. Liver segmentation network based on multilayer perceptron and multi-scale feature extraction[J]. Optical Technique, 2023, 49(1): 105.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!