光散射学报, 2023, 35 (3): 303, 网络出版: 2023-11-17  

红外光谱和气质联用在铁质文物保护修复材料评价中的应用

Scientific analysis and evaluation of iron wares’ conservation materials by FTIR and Py-GC/MS
王克青 1,2,*杨琴 1,2张然 1,2刘薇 1,2
作者单位
1 中国国家博物馆, 北京 100006
2 金属文物保护国家文物局重点科研基地(中国国家博物馆), 北京 100006
摘要
二十世纪七十年代在对铁器进行保护修复时, 文物保护修复人员根据器物的锈蚀程度对器物进行了清洗、除锈、脱盐、粘接、封护等处理。时隔四十多年, 再次审视和查看当年保护修复过的四件铁器时, 为了更科学地了解当时使用的保护修复材料的现状, 本工作采用傅里叶变换显微红外光谱(Micro-FTIR)和热裂解气相色谱-质谱(Py-GC/MS)分析了铁器上的保护修复材料: 粘接剂和封护剂。显微红外非常适合分析微量有机物。Py-GC/MS在分析样品时无需对样品进行前处理, 可直接对样品进行热裂解分析;该方法操作比较简单、灵敏度高、能实现多组分混合有机样品识别, 非常适合用于评价文物上的混合有机材料。该工作既能为铁器上文物保护修复材料的现状提供科学评价方法, 也为评价过去使用过的保护修复方法、铁器的长久保存提供重要的指导。
Abstract
At the beginning of 1970s, conservators started research on the protection and restoration of ironware. According to the degree of rust, the conservators carried out cleaning, rust removal, desalination, bonding and sealing treatments. When examining and reviewing the four restored iron wares, the work uses Fourier Transform Infrared Spectroscopy (FTIR) and Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC/MS) to analyze the restoration materials used in the collection of ironware. Py-GC/MS does not require sample pretreatment when analyzing samples, and the samples can be directly analyzed by thermal cracking, and the operation is relatively simple. In addition, this method requires a small amount of sample. It can not only provide a scientific evaluation the repair materials in iron wares, but also provide important guidance for evaluating the protection and restoration methods used in the past and the long-term preservation of iron wares.
参考文献

[1] 许梦颖, 王克青, 张然. 光学传感器辅助氧气消耗法评估灰口铁的腐蚀状态[J]. 腐蚀与防护, 2022, 43(10): 76-83.(Xu M Y, Wang K Q, Zhang R. Evaluation of the corrosion state of gray iron by optical sensor assisted oxygen consumption method[J]. Corrosion & Protection,2022, 43(10): 76-83.

[2] 梁萍, 李王程. 铁质文物保护中的材料选择——从一件抗战铁刀的保护说起[J]. 文物鉴定与鉴赏, 2020, 10, 76-79.(Liang P, Li W C.Material selection in iron cultural relics conservation: A case study of the protection of an iron knife against war[J]. Identification and Appreciation to Cultural Relics, 2020, 10, 76-79.

[3] 王克青, 许梦颖, 张鹏宇, 等. 一件中国国家博物馆馆藏铜雕塑锈蚀产物的分析研究[J]. 文物保护与考古科学, 2022, 34(5): 43-52.(Wang K Q, Xu M Y, Zhang P Y, et al. Research on the corrosion products of a copper sculpture in the collections of the National Museum of China[J]. Sciences of Conservation and Archaeology,2022, 34(5): 43-52.

[4] 董少华, 杨军昌, 束家平, 等. 显微红外光谱透射法快速鉴别“粉状锈”[J]. 文物保护与考古科学, 2019, 31(1): 111-117.(Dong S H, Yang J C, Shu J P, et al.Rapid identification of powdery rust using transmission infrared microspectroscopy[J]. Sciences of Conservation and Archaeology, 2019, 31(1): 111-117.

[5] 韩化蕊, 魏书亚, 静永杰, 等. THM-Py-GC/MS分析内蒙古伊和淖尔出土照明燃料[J]. 光谱学与光谱分析, 2019, 39(12): 3868-3872.(Han H R, Wei S Y, Jing Y J, et al.Analysis and research or residues from iron lamp unearthed in Yihenaoer, Inner Mongolia by THM-Py-GC/MS[J]. Spectroscopy and Spectral Analysis, 2019, 39(12): 3868-3872.

[6] 王娜, 张学芹, 雷勇, 等. 故宫太和殿护板灰有机组分的红外光谱及热裂解-气相色谱/质谱分析[J]. 文物保护与考古科学, 2018, 30(2): 121-126.(Wang N, Zhang X Q, Lei Y, et al.FTIR and Py-GC/MS analysis of organic materials used in the guard board mortar of Taihe Dian, the Forbidden City[J]. Sciences of Conservation and Archaeology, 2018, 30(2): 121-126.

[7] 王娜, 谷岸, 闵俊嵘, 等. 文物中常用蛋白质类胶结材料的热裂解-气相色谱/质谱识别[J]. 分析化学, 2020, 48(1): 90-96.(Wang N, Gu A, Min J R, et al. Identification of protein binding media used in Chinese cultural relics by pyrolysis-gas chromatography /mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2020, 48(1): 90-96.

[8] 金熹高, 史燚, 译. 聚合物的裂解气相色谱-质谱图集/裂解色谱图、热分析图与裂解产物的质谱图[M]. 北京, 化学工业出版社, 2015.(Jin X G, Shi Y. Pyrolysis-GC/MS data book of synthetic polymers—pyrograms, thermograms and MS of pyrolyzates[M].Beijing, Chemical Industry Press, 2015.

[9] 左洋, 李秀杰, 孙书, 等. 环氧树脂的红外光谱法快速检测技术[J]. 失效分析与预防, 2017, 12(1): 28-33.(Zuo Y, Li X J, Sun S, et al. Rapid inspection method for epoxy by infrared spectroscopy[J]. Failure Analysis and Prevention, 2017, 12(1): 28-33.

[10] 曹京宜, 付大海, 郭铭, 等. 采用裂解气相色谱/质谱法研究双酚A环氧树脂结构[J].现代仪器, 2001, 4, 28-30.(Cao J Y, Fu D H, Guo M, et al. Structure determination of epoxy resin by pyrolysis-gas chromatography/mass spectrometry[J].Modern Instruments, 2001, 4, 28-30.

[11] 张浩, 侯森森, 王利平, 等. 有机玻璃合成的优化及共聚改性研究[J]. 广州化工, 2022, 50(4): 50-52+55.(Zhang H, Hou S S, Wang L P, et al.Study on optimization of synthesis and copolymerization modification of organic glass[J]. Guangzhou Chemical Industry, 2022, 50(4): 50-52+55.

[12] 欧云付, 尹平河, 赵玲, 等. 有机玻璃雕刻过程中有害气体的3阶段预浓缩GC/MS分析[J]. 分析试验室, 2006, 35(4): 68-71.(Ou Y F, Yin P H, Zhao L, et al.Analysis of deleterious emission in sculpturing organic glass using GC/MS coupled with 3-step preconcentrator[J]. Chinese Journal of Analysis Laboratory, 2006, 35(4): 68-71.

王克青, 杨琴, 张然, 刘薇. 红外光谱和气质联用在铁质文物保护修复材料评价中的应用[J]. 光散射学报, 2023, 35(3): 303. WANG Keqing, YANG Qin, ZHANG Ran, LIU Wei. Scientific analysis and evaluation of iron wares’ conservation materials by FTIR and Py-GC/MS[J]. The Journal of Light Scattering, 2023, 35(3): 303.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!